首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邹君鼎  沈保根  孙继荣 《中国物理》2007,16(7):1817-1821
The ErCo2 compound is prepared by arc-melting and its entropy changes are calculated using Maxwell relation. Its entropy change reaches 38 J/(kg·K) and its refrigerant capacity achieves 291 J/kg at 0-5 T. The mean field approximation is used to calculate the magnetic entropy of ErCo2 compound. Results estimated by using the Maxwell relation deviate from mean field approximation calculations in ferrimagnetic state; however, the data obtained by the two ways are consistent in the vicinity of phase transition or at higher temperatures. This indicates that entropy changes are mainly derived from magnetic degree of freedom, and the lattice has almost no contribution to the entropy change in the vicinity of phase transition but its influence is obvious in the ferrimagnetic state below TC.  相似文献   

2.
The first-order phase transition in Gd5Si2Ge2 is sensitive to both magnetic field and pressure.It may indicate that the influences of the magnetic field and the pressure on the phase transition are virtually equivalent.Moreover,theoretical analyses reveal that the total entropy change is almost definite at a certain Curie temperature no matter whether the applied external field is a magnetic field or a pressure.The entropy change curve can be broadened dramatically under pressure,and the refrigerant capacity is improved from 284.7 J/kg to 447.0 J/kg.  相似文献   

3.
The magnetic properties and the magnetic entropy change AS have been investigated for Gd6Co1.67Si3 compounds with a second-order phase transition. The saturation moment at 5 K and the Curie temperature TC are 38.1μB and 298 K, respectively. The AS originates from a reversible second-order magnetic transition around TC and its value reaches 5.2 J/kg.K for a magnetic field change from 0 to 5T. The refrigerant capacity (RC) of Gd6Co1.67Si3 are calculated by using the methods given in Refs.[12] and [21], respectively, for a field change of 0 5T and its values are 310 and 440 J/kg, which is larger than those of some magnetocaloric materials with a first-order phase transition.  相似文献   

4.
对定向凝固方法制备的Ni47Mn32Ga21多晶合金,通过扫描电镜、金相、电子能谱等手段研究其组份和组织形貌,通过对合金磁化强度与温度关系、等温磁化曲线及磁感生应变曲线等的测量分析,研究了合金结构相变和磁相变过程中的磁熵变及不同压力下的磁感生应变. 研究结果表明:合金组份与设计组份基本一致,室温下合金大部分为马氏体相. 升温过程中合金的磁熵变在居里温度(365 K)附近有最大值,并有较大的磁熵变峰值半高宽,747 kA/m的磁场下该磁熵变最大值为-1.45 J/kg ·K,磁熵变峰值的半高宽为21 K. 合金在室温(298 K)下有较好的双向可恢复磁感生应变,480 kA/m磁场下,无压力时合金的磁感生应变值达到-670×10-6,并趋饱和;而在与磁场方向平行的27.3 MPa外压力作用下合金的磁感生应变值增大到-1300×10-6,且未饱和. 关键词: Ni-Mn-Ga 铁磁形状记忆合金 磁熵变 磁感生应变  相似文献   

5.
王芳  沈保根  张健  孙继荣  孟凡斌  李养贤 《中国物理 B》2010,19(6):67501-067501
Magnetic properties and magnetocaloric effect of compound PrFe 12 B 6 are investigated.The coexistence of hard phase PrFe 12 B 6 and soft phase α-Fe causes interesting phenomena on the curves for the temperature dependence of magnetization.PrFe 12 B 6 experiences a first order phase transition at the Curie temperature 200 K,accompanied by an obvious lattice contraction,which in turn results in a large magnetic entropy change.The Maxwell relation fails to give the correct information about magnetic entropy change due to the first order phase transition nature.The large magnetic entropy changes of PrFe 12.3 B 4.7 obtained from heat capacity method are 11.7 and 16.2 J/kg.K for magnetic field changes of 0-2 T and 0-5 T respectively.  相似文献   

6.
Effect of Fe-substitution on the phase formation, partitioning behaviour of Fe in the co-existing phases, magneto-structural transition, magnetic entropy change and associated hysteresis losses has been investigated in Gd5Si2Ge2 alloy. The virgin alloy crystallizes in monoclinic Gd5Si2Ge2-type phase, while Fe-substituted alloys form mixed monoclinic Gd5Si2Ge2-type and orthorhombic Gd5Si4-type phases. Electron probe microanalysis reveals that Fe does not dissolve in the matrix, but influences the magneto-structural transitions. Magneto-structural characterization of the Fe-containing alloys reveals that the Fe-substitution suppresses the structural transition observed at 273 K in virgin alloy. A maximum magnetic entropy change, ΔSM of 6.5 J/kg-K at 273 K was observed for a field change of 2 T in Gd5Si2Ge2 alloy. The Fe-substituted alloys exhibit lower value of ΔSM but with reduced hysteresis losses.  相似文献   

7.
E. Yüzüak  I. Dincer  Y. Elerman 《中国物理 B》2010,19(3):37502-037502
The magnetocaloric properties of the Gd 5 Ge 2.025 Si 1.925 In 0.05 compound have been studied by x-ray diffraction,magnetic and heat capacity measurements.Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Gd5Ge2Si2-type structure and a small quantity of Gd 5(Ge,Si) 3-type phase at room temperature.At about 270 K,this compound shows a first order phase transition.The isothermal magnetic entropy change(△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change(△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data.The maximum S M is 13.6 J·kg-1·K-1 and maximum △Tad is 13 K for the magnetic field change of 0-5 T.The Debye temperature(θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV·atom from the low temperature zero-field heat-capacity data.A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925 In 0.05 compound an attractive candidate for a magnetic refrigerant.  相似文献   

8.
The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1.  相似文献   

9.
Single phase Mn5Ge3 ribbons were successfully synthesized by single roller melt-spinning method followed by an annealing procedure at 800 °C for 1 h. The magnetocaloric effect and transition order were investigated by dc magnetization measurement. A maximum entropy change of 4.92 J/kg K and a refrigerant capacity of 201.3 J/kg were observed at an external field change of 30 kOe. The Banerjee criterion was adopted to discriminate the order of the transition, indicating a second order transition. The calculated entropy changes were also obtained by Landau theory, which are in agreement with the experimental values at the temperature region above the Curie temperature. This phenomena implies a potential transition of the magnetic interaction in the vicinity of the Curie temperature. Universal behavior was also indicated in that all of the experimental entropy change curves collapse into one universal curve, which is consistent with the Banerjee criterion.  相似文献   

10.
The influence of monovalent doping on the magnetocaloric effect (MCE) and refrigerant capacity or relative cooling power (RCP) of Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag) materials has been investigated. A large magnetocaloric effect was inferred over a wide range of temperature around the second order paramagnetic–ferromagnetic transition. The maximum magnetic entropy changes (ΔSM) reached 1.8, 2.2, 1.6 and 2.1 J/kg K and the relative cooling power (RCP) approached 58.9, 59.3, 69.6 and 54.6 J/kg for Na, Li, K and Ag doped materials in the magnetic change of 15 kOe, respectively. According to the results determined by the Maxwell relation, the magnetic entropy change fits well with the Landau theory of phase transition above TC for Pr0.5Sr0.3Li0.2MnO3. The large magnetic entropy change induced by low magnetic field suggested that these materials are beneficial for practical applications.  相似文献   

11.
沈俊  王芳  李养贤  孙继荣  沈保根 《中国物理》2007,16(12):3853-3857
Magnetic properties and magnetocaloric effects of Tb6Co1.67Si3 have been investigated by magnetization measurement. This compound is of a hexagonal Ce$_{6}$Ni$_{2}$Si$_{3}$-type structure with a saturation magnetization of 187\,emu/g at 5\,K and a reversible second-order magnetic transition at Curie temperature $T_{\rm C} = 186$\,K. A magnetic entropy change $\Delta S = 7$\,J\,$\cdot$\,kg$^{-1}$\,$\cdot$\,K$^{-1}$ is observed for a magnetic field change from 0 to 5\,T. A large value of refrigerant capacity (RC) is found to be 330\,J/kg for fields ranging from 0 to 5\,T. The large RC, the reversible magnetization around $T_{\rm C}$ and the easy fabrication make the Tb6Co1.67Si3 compound a suitable candidate for magnetic refrigerants in a corresponding temperature range.  相似文献   

12.
We have studied the magnetocaloric effect (MCE) in a bilayered La4/3Sr5/3Mn2O7 single crystal with applied field along both ab-plane and c-direction. Due to the quasi-two-dimensional structure, the crystal exhibits a strong anisotropy in the MCE. The difference of magnetic entropy change between two crystallographic directions depends on external magnetic fields and has a maximum of 2 J/kg K. A large low-field magnetic entropy change, reaching 3.2 J/kg K for a magnetic field change of 15 kOe, is observed when the applied field is along ab-plane. This large low-field magnetic entropy change is attributed to the rapid change of magnetization in response to external magnetic fields in the easy magnetizing plane.  相似文献   

13.
In this paper, we have studied the magnetic and magnetocaloric properties of the perovskite manganite Pr0.55Sr0.45MnO3. It shows a sharp paramagnetic-ferromagnetic phase transition at 291 K and possesses a moderate magnetic entropy change near room temperature. In addition, a large relative cooling power (143.64 J/kg) and a wide temperature range (84 K) have been found in this material. Compare with the Landau model, we find that the itinerant electrons mainly contribute the larger magnetic entropy change at paramagnetic region.  相似文献   

14.
敬超  陈继萍  李哲  曹世勋  张金仓 《物理学报》2008,57(7):4450-4455
利用电弧炉熔炼了Ni50Mn35In15多晶样品,根据磁性测量对其马氏体相变和磁热效应进行了系统研究.结果表明,随着温度的降低,样品在室温附近先后发生了二级磁相变与一级结构相变特征的马氏体相变,导致它的磁化强度产生突变. 同时通过低温下的磁滞回线的测量发现样品存在交换偏置行为,表明低温下马氏体相中铁磁和反铁磁共存. 此外,根据Maxwell方程,计算了样品在马氏体相变温度附近的磁熵变,当温度为309K,磁场改变5 T时,样品的磁熵变可达22.3J/kgK. 关键词: 哈斯勒合金 50Mn35In15')" href="#">Ni50Mn35In15 马氏体相变 磁热效应  相似文献   

15.
Magnetic properties of rare-earth intermetallics RE2Ni7 (RE=Dy, Ho) are reported. Both the samples undergo two successive magnetic transitions at Th (paramagnetic to ferromagnetic) and Tl (spin reorientation) below 100 K. The transitions are found to be second order in nature as evident from the Arrot plot analysis. Large reversible magnetocaloric effect (MCE) was observed at low temperature in the studied samples. The maximum value of the magnetic entropy change in Ho2Ni7 is found to be −12.5 J/kg K (for 0 to 50 kOe of field change) around 25 K with a high relative cooling power (RCP) of 534 J/kg. The Dy counterpart also shows moderately large values of MCE (−7.3 J/kg K) and RCP (475 J/kg) around the magnetic transition region for similar change in the magnetic field. RE2Ni7 compounds can be promising materials for magnetic refrigeration in the temperature range of helium and hydrogen liquefaction.  相似文献   

16.
孙晓东  徐宝  吴鸿业  曹凤泽  赵建军  鲁毅 《物理学报》2017,66(15):157501-157501
研究了Tb掺杂对双层锰氧化物La_(4/3)Sr_(5/3)Mn_2O_7磁熵变和电输运性质的影响.样品采用传统固相反应法制备,两样品的名义组分可以表示为(La_(1-x)Tb_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0,0.025),磁场为7 T时的最大磁熵变?S_M分别为-4.60 J/(kg·K)和-4.18 J/(kg·K).比较后发现,Tb元素的掺杂使得最大磁熵变值减小,但同时增大了相对制冷温区.电性测量结果表明,x=0.025的样品在高温区的导电机制可以用小极化子模型解释,与母体三维变程跳跃模型不同;当温度降低至三维长程铁磁有序温度(T_c~(3D))附近时,掺杂样品发生金属绝缘相变;掺杂后样品在T_c~(3D)附近,磁电阻取得极大值(约为56%),表明是本征磁电阻效应.  相似文献   

17.
We have studied the isothermal entropy change around a first-order structural transformation and in correspondence to the second-order Curie transition in the ferromagnetic Heusler alloy Ni2.15Mn0.85Ga. The results have been compared with those obtained for the composition Ni2.19Mn0.81Ga, in which the martensitic structural transformation and the magnetic transition occur simultaneously. With a magnetic field span from 0 to 1.6 T, the magnetic entropy change reaches the value of 20 J/kg K when transitions are co-occurring, while 5 J/kg K is found when the only structural transition occurs. Received 27 September 2002 / Received in final form 17 February 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: solzi@fis.unipr.it  相似文献   

18.
La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应   总被引:8,自引:0,他引:8       下载免费PDF全文
陈伟  钟伟  潘成福  常虹  都有为 《物理学报》2001,50(2):319-323
采用溶胶凝胶法制备了系列La0.8-xCa0.2MnO3多晶样品,用X射线衍射分析确定了样品的钙钛矿结构,用透射电子显微镜观察了样品的形貌及粒径分布情况,用PAR155型振动样品磁强计测量了样品的磁性随外场和温度的变化,确定样品的居里温度并计算了各样品的磁熵变.磁测量及计算结果表明制备的各样品的居里温度在180—260K的范围内且随焙烧温度和La3+离子空位浓度的不同而变化,不同温度焙烧的样品均有较大的磁熵变值,其中1100℃焙烧的La0.77Ca0.2MnO3,多晶样品在240.5K,H=1.0T的外场下的磁熵变达3.76J/kg·K,对实验结果做了定性的分析.该材料具有较高的居里温度和较大的磁熵变,所需外场强度适中,电阻率高,性能稳定,适合做高温磁制冷材料. 关键词: 钙钛矿 居里温度 磁热效应  相似文献   

19.
The La0.67Sr0.33MnO3 composition prepared by sol-gel synthesis was studied by dc magnetization measurements. A large magnetocaloric effect was inferred over a wide range of temperature around the second-order paramagnetic-ferromagnetic transition. The change of magnetic entropy increases monotonically with increasing magnetic field and reaches the value of 5.15 J/kg K at 370 K for Δμ0H=5 T. The corresponding adiabatic temperature change is 3.3 K. The changes in magnetic entropy and the adiabatic temperature are also significant at moderate magnetic fields. The magnetic field induced change of the specific heat varies with temperature and has maximum variation near the paramagnetic-ferromagnetic transition. The obtained results show that La0.67Sr0.33MnO3 could be considered as a potential candidate for magnetic refrigeration applications above room temperature.  相似文献   

20.
Magnetic properties and magnetic entropy change ΔS were investigated in Heusler alloy Ni43Mn43Co3Sn11. With decreasing temperature this alloy undergoes a martensitic structural transition at TM=188 K. The incorporation of Co atoms enhances ferromagnetic exchange for parent phases. Austenitic phase with cubic structure shows strong ferromagnetic behaviors with Curie temperature TCA at 346 K, while martensitic phase shows weak ferromagnetic properties. An external magnetic field can shift TM to a lower temperature at a rate of 4.4 K/T, and a field-induced structural transition from martensitic to austenitic state takes place at temperatures near but below TM. As a result, a great magnetic entropy change with positive sign appears. The size of ΔS reaches 33 J/kg K under 5 T magnetic field. More important is that the ΔS displays a table-like peak under 5 T, which is favorable for Ericsson-type refrigerators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号