首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Polyelectrolyte complexes (PECs) were prepared from N,N,N-trimethylchitosan iodide (TMCh) of different molar mass and a weak polyacid-poly(acrylic acid) (PAA) or a strong polyacid-poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The quaternization of the amino groups of chitosan enabled the formation of water-insoluble PECs in a broad pH range—from 3 to 12 and from 1 to 12 for TMCh/PAA and TMCh/PAMPS, respectively. Whereas the stoichiometry of the TMCh/PAA complex was pH dependant, the stoichiometry of the TMCh/PAMPS complex did not depend on pH. The stoichiometry and the yield of the complexes were influenced by the molar mass of TMCh. PEC nanoparticles were produced by mixing dilute solutions of the oppositely charged polyelectrolytes as revealed by dynamic light scattering analyses. The size of the particles was in the range of 135–924 nm and depended on the polyelectrolyte molar mass, the initial polyelectrolyte concentration, and the molar fraction of the TMCh units. Microbiological screening against Staphylococcus aureus and Escherichia coli revealed that PECs between TMCh and PAA or PAMPS have a good antibacterial effect, which is more slowly pronounced than that of the starting TMCh of different molar mass.  相似文献   

2.
The speciation of Eu complexed with polyacrylic acid (PAA) and alumina-bound PAA (PAA(ads)) was studied at pH 5 in 0.1 M NaClO(4). Structural parameters were obtained from (7)F(0) -->(5)D(0) excitation spectra measured by laser-induced fluorescence spectroscopy as well as from Eu L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra. The coordination mode was also investigated by infrared spectroscopy. To elucidate the nature of the complexed species, Eu-acetate complexes were used as references. The spectroscopic techniques show that two carboxylate groups with 2-3 (EuPAA) and 4-5 (EuPAA(ads)) water molecules are coordinated to Eu in the first coordination sphere. For EuPAA(ads), the coordination between carboxylate groups and Eu appears to be bidendate. A similar coordination is probable for EuPAA but the EXAFS data indicate a slightly distorted coordination. The results show that the degree of freedom of carboxylate groups is not the same for free or adsorbed PAA. For PAA, the degree of freedom is constrained by the flexibility of the methylene chain. When PAA is adsorbed on alumina, the polymer chains cannot any more be treated as independent chains. One may rather assume formation of aggregates that form an organic layer at the mineral surface presenting a complex arrangement of carboxylate groups.  相似文献   

3.
Poly(acrylic acid) (PAA) with different molecular weight and poly(vinylpyrrolidone) (PVP) were prepared by free radical polymerization using 2,2′-azoisobutyronitrile (AIBN) as initiator in anhydrous methanol for PAA, and in distilled water for PVP. Then, the complexation between PAA and PVP in aqueous solution was studied by UV transmittance measurement and fluorescence probe technique. The result shows that (1) at low pH, the formation of complexation between PAA and PVP bases on the intermacromolecular hydrogen bond and the composition of the formed complex is around 3:2 (the unit molar ratio of PAA to PVP) at pH 2.60 over the range of pH investigated. (2) The cooperative interaction through the formation of hydrogen bond among active sites plays an important role in complex formation, and depends on the pH of solution, the required minimum chain length of poly(acrylic acid). (3) The hydrogen bond is not affected by small molecular salt, which only affects those carboxylic groups without forming hydrogen bond on the PAA chain.  相似文献   

4.
SynthesisandInvestigationofMonoestersofPolymaleicAcidswithAzo┐GroupSUFeng-yu,LIYan,TANGJun,TIANYan-qing*ZHAOYing-yingandZ...  相似文献   

5.
A specific method for the separation and detection of non-UV-absorbing polyelectrolytes has been developed. The analysis of such polyelectrolytes by liquid chromatography is nearly impossible due to strong ionic interactions and charge density effects. CE makes use of these charge density effects and thus enables for proper separation. A capacitively coupled contactless conductivity detector has been applied for the detection in CE. A low molar mass poly(acrylic acid) sodium salt standard (PAA1.3k) was separated in free solution CE and detected with the contactless conductivity detector. Different amphoteric electrolytes have been tested for their applicability as BGE for the separation of polyelectrolytes with conductivity detection. It has been shown that the best detection results are obtained with an arginine-sorbate buffer.  相似文献   

6.
The redox behavior of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) in the presence of different polyelectrolytes such as poly(sodium 4-styrenesulfonate) (PSS), poly(sodium 4-styrenesulfonate-co-sodium maleate) at two different comonomer compositions (P(SS(1)-co-MA(1)) and P(SS(3)-co-MA(1))), poly(sodium acrylate-co-sodium maleate) (P(AA(1)-co-MA(1))), and poly(sodium acrylate) (PAA) is studied. Due to aromatic-aromatic interactions, the polyelectrolytes containing benzene sulfonate groups produce a decrease on the reduction rate of TTC in the presence of ascorbic acid (ASC) and a shift of the anodic and cathodic peaks to higher negative potentials for the electrochemical reaction of TTC. As an important conclusion, these effects are a function of the linear aromatic density of the polyelectrolytes.  相似文献   

7.
We investigate the behavior of single polyelectrolytes in multivalent salt solutions under the action of electric fields through computer simulations. The chain is unfolded in a strong electric field and aligned parallel to the field direction, and the chain size shows a sigmoidal transition. The unfolding electric field E* depends on the salt concentration and scales as V (-1/2) with V being the ellipsoidal volume occupied by the chain. The magnitude of the electrophoretic mobility of chain drastically increases during the unfolding. The fact that E* depends on the chain length provides a plausible mechanism to separate long charged homopolymers by size in free solution electrophoresis via the unfolding transition of globule polyelectrolytes condensed by multivalent salt.  相似文献   

8.
Aqueous solutions of ionenes with bromide and fluoride counterions have been investigated using small angle neutron scattering for the first time. Ionenes are a class of cationic polyelectrolytes based on quaternary ammonium atoms and, considering the very low solubility of their uncharged part (hydrocarbon chain), would be formally classified as hydrophobic. Ionenes present important structural differences over previously studied polyelectrolytes: (a) charge is located on the polyelectrolyte backbone, (b) the distance between charges is regular and tunable by synthesis, (c) hydrophobicity comes from methylene groups of the backbone and not from bulky side groups. Results for Br ionenes feature a disappearance of the well-known polyelectrolyte peak beyond a given monomer concentration. Below this concentration, the position of the peak depends on the chain charge density, f(chem), and scales as f(chem)(0.30±0.04). This is an indication of a hydrophilic character of the ionene backbone. In addition, osmotic coefficients of ionene solutions resemble again other hydrophilic polyelectrolytes, featuring no unusual increase in the water activity (or a significant counterion condensation). We conclude that despite the hydrophobicity of the hydrocarbon chain separating charged centers on ionenes, these chains behave as hydrophilic. In contrast to Br ionenes, the polyelectrolyte peak remains at all concentrations studied for the single F ionene investigated. This strong counterion effect is rationalized in terms of the different hydrating properties and ion pairing in the case of bromide and fluoride ions.  相似文献   

9.
Photo-cross-linkable polyelectrolyte multilayers were made from poly(allylamine) (PAH) and poly(acrylic acid) (PAA) modified with a photosensitive benzophenone. Nanoindentation, using atomic force microscopy (AFM) of these and unmodified PAH/PAA multilayers, was used to assess their mechanical properties in situ under an aqueous buffer. Under the conditions employed (and a 20 nm radius AFM tip), reliable nanoindentations that appeared to be decoupled from the properties of the silicon substrate were obtained for films greater than 150 nm in thickness. A strong difference in the apparent modulus was observed for films terminated with positive as compared to negative polyelectrolytes. Films terminated with PAA were more glassy, suggesting better charge matching of polyelectrolytes. Multilayers irradiated for up to 100 min showed a smooth, controlled increase in the modulus with little change in the water contact angle. The permeability to iodide ion, measured electrochemically, also decreased in a controlled fashion.  相似文献   

10.
Low molar mass poly(acrylic acid) (PAA) is generally obtained by free radical polymerization of acrylic acid (AA) in aqueous solution, using thermal initiators and some chain transfer agent. However, under such conditions it is rather difficult to efficiently produce molar masses as low as those required for obtaining an effective dispersant. In this work, the semibatch polymerization of AA at 45 °C is considered, using potassium persulfate (KPS) and sodium metabisulfite (KPS/NaMBS), or alternatively KPS and sodium hypophosphite (KPS/NaHP) as redox initiators to produce PAA of controlled low molar masses. These initiation systems allow the production of PAA with Mn as low as 2.0 kDa, relatively narrow molar mass distribution (1.5 < Mw/Mn < 3.0), and low branching degree. Most of the investigated polymerizations reach almost complete conversions (>95%); and it is verified that both reductants, NaMBS and NaHP, also behave as chain transfer agents. Finally, the investigated process with redox couples allowed the production of PAA with acceptable dispersant and antiscaling properties.  相似文献   

11.
Multilayered manganese oxide nanocomposites intercalated with strong (poly(diallyldimethylammonium) chloride, PDDA) and weak (poly(allylamine hydrochloride), PAH) polyelectrolytes can be produced on polycrystalline platinum electrode in a thin film form by a simple, one-step electrochemical route. The process involves a potentiostatic oxidation of aqueous Mn2+ ions at around +1.0 V (vs Ag/AgCl) in the presence of polyelectrolytes. Fully charged PDDA polycations are accommodated tightly in the interlayer space by electrostatic interaction with negative charges on the manganese oxide layers, leading to an interlayer distance of 0.97 nm. The layered film prepared with PAH has a larger polymer content (PAH/Mn molar ratio of 0.98) than that (PDDA/Mn molar ratio of 0.43) made with PDDA because of the smaller charging degree of PAH, exhibiting a larger interlayer distance (1.19 nm). The interlayer PAH contains neutral (-NH2) and positively charged (-NH3(+)) amine groups, and the -NH3(+) groups are associated with Cl- (to generate -NH3(+) Cl- ion pairs) as well as the negatively charged manganese oxide layers. Both polyelectrolytes once incorporated were not ion exchanged with small cations in solution. The layered structure of PDDA/MnO(x) was collapsed during the reduction process in a KCl electrolyte solution, accompanying an expansion of the interlayer as a result of incorporation of K+ ions for charge neutrality. On the contrary, the layered PAH/MnO(x) film showed a good electrochemical response due to the redox reaction of Mn3+/Mn4+ couple with no change in the structure. X-ray photoelectron spectroscopy revealed that, in this case, excess negative charges generated on the manganese oxide layers upon reduction can be balanced by the protons being released from the -NH3(+) Cl- sites in the interlayer PAH; the Cl- anions becoming unnecessary are inevitably excluded from the interlayer, and vice versa upon oxidation.  相似文献   

12.
The surface properties of poly(N-monoalkylmaleamic acid-alt-styrene) sodium salts are studied as a function of the molecular weight and the size of the linear alkyl lateral chain of the polyelectrolyte. The experimental results are well described by the Gibbs-Szyszkowski treatment. Both the surface tension behavior and the standard free energy of adsorption depend on the polyelectrolyte side chain and on the average molecular weight, M(w). An M(w)-dependent contribution to the free energy of adsorption ranging from -1.21 to -1.05 kJ for mole of methylene groups is found. The area covered by monomer units increases with M(w) and the sizes of side chains are similar to those reported in small-molecule systems. The nature of the functional group amide in the side chain has practically no effect on the surface properties as compared with the ester group in this kind of polyelectrolytes.  相似文献   

13.
The interaction between certain hydrophilic pluronic (poloxamer) surfactants and a poly (acrylic acid) has been investigated. Both the PPO and the PEO groups of the surfactants, and the -COOH groups and aliphatic side chains of the PAA molecule, were found to be crucial in this interaction to form complexes. At pH 2 and with a low poloxamer:PAA molar ratio, maximum interaction was observed, giving rise to large-sized complexes that were unstable but possessing bioadhesive properties. At the same pH but with higher poloxamer:PAA molar ratio, the complexes became smaller in size and more stable and were used to prepare stable w/o/w emulsions. A further increase in the poloxamer:PAA molar ratio or increase in the pH causes a further decrease in particle size with eventual nonformation of complexes. Interaction and stability studies of the complexes were done using photon correlation spectroscopy. The overall interaction appears to be a combination of hydrophobic interaction and hydrogen bonding. This has given rise to a unique ratio which we have called the [oxyphobic]/[oxyphilic] ratio or OOR. The interaction was found to depend on the molar ratio between poloxamer surfactants and PPA; the [O]total/[-COOH] ratio; the size of the PPO hydrophobe, and the pH of the reaction mixture. pH measurement studies of these mixtures also gave similar results.  相似文献   

14.
The influence of polyelectrolytes on the structural and catalytic characteristics of urease (Canavalia ensiformis) was studied by the methods of steady-state kinetics, fluorescence spectroscopy, and circular dichroism. It was shown that, of the four polyelectrolytes studied, two of which were negatively charged (polystyrene sulfonate and dextran sulfate) and two were positively charged (polyallylamine (PAA) and polydiallyl dimethylammonium chloride), only PAA was a potent urease inhibitor: 0.5 μg/ml of PAA provided a 50% degree of inhibition for enzyme at neutral pH. It was found that polyelectrolyte did not inhibit urease in the presence of micromolar concentrations of ammonium chloride. Based on the experimental data and the calculated structure of urease from Canavalia ensiformis and on the identity with the amino acid sequence of urease from Bacillus pasteurii, the mechanism of urease inactivation by the PAA polyelectrolyte is discussed. This mechanism does not resemble the inhibiting action of polyelectrolytes on the previously studied oligomeric proteins—lactate dehydrogenase, glutamate dehydrogenase, and hemoglobin. It is proposed that the specific cation-binding sites determining the structural dynamics of the enzyme-polyelectrolyte complex play the regulating role in the urease molecule.  相似文献   

15.
Biosensor construction and characterization studies of poly(acrylic acid) (PAA) and poly(1-vinyl imidazole) (PVI) complex systems have been carried out. The biosensors were prepared by mixing PAA with PVI at several stoichiometric ratios, x (molar ratio of the monomer repeat units). The enzyme, invertase, was entrapped in the PAA/PVA interpenetrating polymer networks during complexation. Modifications were made on the PAA/PVI conducting polymer electrolyte matrixes to improve the stability and performance of the polymer electrolyte-based enzyme biosensor. The maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) were investigated for the immobilized invertase. The temperature and pH optimization, operational stability, and shelf life of the polymer electrolyte biosensor were also examined.  相似文献   

16.
Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly-N,N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.  相似文献   

17.
The interfacial activity of polyelectrolytes carrying alkyl side chains of different length has been studied. Potassium salts of poly(maleic acid-co-1-olefins), PA-n K2 with n=12 , 14, 16, 18, were synthesized, and the interfacial tension at the aqueous solution/n -octane interface was measured as a function of the length of the alkyl side chain. The results show that the interfacial tension lowering, the limiting excess concentration Gamma (m), and the efficiency of adsorption pC (20) depend on the number of methylene groups in the alkyl side chain. According to Rosen the last two parameters define two different contributions to the standard free energy of adsorption: one arises from the distribution of the polymer between the bulk of the solution and the interface Delta G (dist )(0), and another comes from the configuration adopted at the interface Delta G (int )(0). These free energies were plotted as a function of the number of carbon atoms in the alkyl side chain and a linear relation was found for both of them. From these plots contributions of 0.83 and -0.58 per methylene group were determined for Delta G (0)(dist ) and Delta G (0)(int ), respectively. The positive value for the incremental free energy of distribution is attributed to the formation of a polymer micelle which is stabilized by longer alkyl side chains. On the other hand, the negative value for Delta G (0)(int ) indicates that at the interface the polymer adopts a configuration where the hydrocarbon tail is interacting with the octane molecules.  相似文献   

18.
邻苯二甲酸二甲酯是一种干扰人体内分泌系统的化学物质,尽管对人体具有潜在危害,目前仍做为塑料、醋酸乙烯酯、纤维素等生产过程中的添加剂而广泛使用.伴随着邻苯二甲酸二甲酯的生产和应用,自然界不可避免地受其污染.因此,如何有效降解排放在环境中的邻苯二甲酸二甲酯以减少其对人类的不利影响成为化学研究者的重要任务.通过半导体光催化剂高效利用太阳能光催化降解邻苯二甲酸二甲酯是一种有效方法. TiO2等半导体光催化剂由于光催化过程中产生的电子-空穴对极易复合导致其催化效率不高,减少光生电子-空穴对复合率进而提高光量子效率的方法有金属掺杂、非金属掺杂、表面敏化、半导体复合等多种手段.其中, MoO3由于其独特的结构和化学性质广泛应用于光催化领域,并常作为耦合剂与其他半导体(如TiO2)复合以提高光催化活性.在我们以前的工作中,曾使用MoO3做为耦合剂与V2O5复合,实验结果证明MoO3与V2O5复合形成异质结构有效提高了V2O5的光催化效率. MoO3由于其带隙较宽(约2.90 eV),对太阳光利用率不高,以及电子-空穴对极易复合导致MoO3实际光催化活性并不好.因此,我们考虑以MoO3做为主体, V2O5做为耦合剂研究n(V)/n(Mo)比对V2O5/MoO3复合光催化剂结构和性能的影响.我们以聚乙烯吡咯烷酮(PVP)、四水合钼酸铵((NH4)6Mo7O24·4H2O)和偏钒酸铵(NH4VO3)为原料,采用静电纺丝技术结合溶胶凝胶过程的方法,成功制备了具有不同n(V)/n(Mo)比的V2O5/MoO3复合光催化剂. XRD结果表明,当n(V)/n(Mo)<1/6时,钒离子掺杂进入MoO3晶格内,n(V)/n(Mo)>1/6时,部分钒离子掺杂进入MoO3晶格内,部分钒离子聚集形成V2O5晶体, V2O5晶体数量随着n(V)/n(Mo)逐渐增加,且尺寸有所增长.这一点在扫描电镜中得到了进一步的证实.扫描电镜结果表明α-MoO3呈规则的层状结构,为长度约3μm,宽度约2μm,厚度约500 nm的表面光滑的正交相MoO3微纳米片,而V2O5则为微纳米颗粒,其中表面光滑的层状MoO3微纳米片散乱分布在块状V2O5微纳米颗粒之间,并与V2O5微纳米颗粒团簇紧密接触.由于二者的紧密接触,可能在二者交界处形成了V2O5/MoO3异质结构.紫外-可见漫反射光谱数据表明,掺杂或者异质结构的形成有效降低了MoO3的带隙,促进了MoO3对可见光的吸收,拓宽了光响应范围.为进一步确定MoO3与V2O5复合前后元素的化学态变化,我们进行了XPS能谱测试.通过对V 2p和Mo 3d XPS谱图高斯曲线拟合发现,与纯V2O5相比, VM-6和VM-2中不同价态的V元素电子结合能均有所增加.同时, VM-6和VM-2中的Mo元素的电子结合能与纯MoO3相比有轻微的减少,这说明无论是掺杂还是异质结构的形成都使V离子和Mo离子的化学环境有所改变.我们以亚甲基蓝为探针反应,测试V2O5/MoO3复合光催化剂的催化活性.结果表明,无论掺杂还是异质结构的光催化剂光催化降解亚甲基蓝的活性均远大于纯MoO3和V2O5.这可能是由于V 3d杂质能级的存在以及V2O5和MoO3交界处异质结构的形成有效降低了MoO3的带隙,拓宽了光响应范围.另一方面,异质结构有利于光生电子-空穴对的分离,有效提高了光量子效率.其中, n(V)/n(Mo)的最佳比为1/2,亚甲基蓝的光降解率高达89.23%.为了测定V2O5/MoO3复合光催化剂对邻苯二甲酸二甲酯的光催化活性,我们选取了样品纯MoO3, V2O5, VM-6和VM-2进行测试.测定结果与光催化降解亚甲基蓝结果吻合, VM-2催化效果最高,可达82.20%.并通过高效液相色谱测定邻苯二甲酸二甲酯降解过程的中间产物为邻苯二甲酸.  相似文献   

19.
Ultrathin fibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were fabricated using the electrospinning technique. Methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The controlled release of drugs from electrospun fibers have potential applications as drug carriers in biomedical science.  相似文献   

20.
Carboxyl groups of surface-tethered poly(acrylic acid) (PAA) brushes should be able to serve as versatile moieties for a wide range of chemical modifications, including an attachment of bioactive species that can act as sensing probes for biosensors. In this research, poly(tert-butyl acrylate) (Pt-BA) brushes were prepared by surface-initiated atom transfer radical polymerization of tert-butyl acrylate. PAA brushes were then obtained after removal of the tert-butyl groups from the Pt-BA brushes by acid hydrolysis. The carboxyl group density of the PAA brushes can be varied as a function of chain length or molecular weight. The reactivity of the carboxyl groups of PAA brushes towards the immobilization of biotin, a frequently used model bioactive probe in biosensing applications, was evaluated. Qualitative determination of streptavidin (SA) binding to the biotin-attached PAA brushes was verified by fluorescence microscopy. The efficiency of the PAA brushes to act as a three dimensional (3D) precursor layer for biosensing applications was further demonstrated using surface plasmon resonance (SPR), where the biotin-attached PAA brushes showed an enhanced signal for the biospecific binding of SA in comparison with a self-assembled monolayer (SAM) of a carboxyl-terminated alkanethiol, used as a model two-dimensional (2D) conventional precursor layer. The PAA brushes showed very low non-specific interactions with two other tested proteins of a similar pI but different sizes. This desirable feature should be highly beneficial for the development of biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号