首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.  相似文献   

2.
LIU  Chun-Ping 《理论物理通讯》2009,51(6):985-988
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.  相似文献   

3.
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.  相似文献   

4.
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.  相似文献   

5.
In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+ 1)-dimensional KK equation by the symmetry method and the (G1/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions.  相似文献   

6.
The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and cross kink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensionai nonlinear wave field.  相似文献   

7.
The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyper- bolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (GI/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.  相似文献   

8.
In this article, we propose an alternative approach of the generalized and improved (G'/G)-expansion method and build some new exact traveling wave solutions of three nonlinear evolution equations, namely the Boiti- Leon-Pempinelle equation, the Pochhammer-Chree equations and the Painleve integrable Burgers equation with free parameters. When the free parameters receive particular values, solitary wave solutions are constructed from the traveling waves. We use the Jacob/elliptic equation as an auxiliary equation in place of the second order linear equation. It is established that the proposed algorithm offers a further influential mathematical tool for constructing exact solutions of nonlinear evolution equations.  相似文献   

9.
An algebraic method with symbolic computation is devised to uniformly construct a series of exact solutions of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawda equation. The solutions obtained in this paper include solitary wave solutions, rational solutions, triangular periodic solutions, Jacobi and Weierstrass doubly periodic solutions. Among them, the Jacobi periodic solutions exactly degenerate to the solutions at a certain limit condition. Compared with most existing tanh method, the method used here can give new and more general solutions. More importantly, this method provides a guldeline to classifj, the various types of the solution according to some parameters.  相似文献   

10.
A modified G′/G-expansion method is presented to derive traveling wave solutions for a class of nonlinear partial differential equations called Whitham -Broer- Kaup-Like equations. As a result, the hyperbolic function solutions, trigonometric function solutions, and rational solutions with parameters to the equations are obtained. When the parameters are taken as special values the solitary wave solutions can be obtained.  相似文献   

11.
In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.  相似文献   

12.
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.  相似文献   

13.
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.  相似文献   

14.
刘成仕 《中国物理》2005,14(9):1710-1715
A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.  相似文献   

15.
In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coetticients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions.  相似文献   

16.
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.  相似文献   

17.
We investigate a new class of periodic solutions to (2+1)-dimensional KdV equations, by both the linear superposition approach and the mapping deformation method. These new periodic solutions are suitable combinations of the periodic solutions to the (2+1)-dimensional KdV equations obtained by means of the Jacobian elliptic function method, but they possess different periods and velocities.  相似文献   

18.
With the help of the homogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method, the first elliptic function equation is used to obtain the Jacobi doubly periodic wave solutions of the (2+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and the generalized Klein-Gordon equation. The method is also valid for other (1+1)-dimensional and higher dimensional systems.  相似文献   

19.
By using the compatibility method, many explicit solutions of the (1+1)-dimensional variable-coefficient Broer Kaup system are constructed, which include new solutions expressed by error function, Bessel function, exponential function, and Airy function. Some figures of the solutions are given by the symbolic computation system Maple.  相似文献   

20.
In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation. So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号