首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unconditionally secure signature is an important part of quantum cryptography. Usually, a signature scheme only provides an environment for asingle signer. Nevertheless, in real applications, many signers maycollaboratively send a message to the verifier and convince the verifierthat the message is actually transmitted by them. In this paper, we give ascalable arbitrated signature protocol of classical messages with multi-signers. Its security is analyzed and proved to be secure even with a compromised arbitrator.  相似文献   

2.
In this paper, we present a verifiable arbitrated quantum signature scheme based on controlled quantum teleportation. The five-qubit entangled state functions as a quantum channel. The proposed scheme uses mutually unbiased bases particles as decoy particles and performs unitary operations on these decoy particles, applying the functional values of symmetric bivariate polynomial. As such, eavesdropping detection and identity authentication can both be executed. The security analysis shows that our scheme can neither be disavowed by the signatory nor denied by the verifier, and it cannot be forged by any malicious attacker.  相似文献   

3.
A new arbitrated quantum signature of quantum messages with a semi-honest arbitrator is designed by utilizing the chained control-NOT(CNOT) operations encryption and the classical public board. Detailed theoretical analysis show that the proposed scheme satisfies the requirements of unforgeable and undeniable properties. The novelty is that the feasibility of signing quantum messages under the control of a semi-honest arbitrator is demonstrated. And with the help of the decoy technique, shared keys can be reused.  相似文献   

4.
An arbitrated quantum signature scheme without using entangled states is proposed.In the scheme,by employing a classical hash function and random numbers,the secret keys of signer and receiver can be reused.It is shown that the proposed scheme is secure against several well-known attacks.Specifically,it can stand against the receiver’s disavowal attack.Moreover,compared with previous relevant arbitrated quantum signature schemes,the scheme proposed has the advantage of less transmission complexity.  相似文献   

5.
李伟  范明钰  王光卫 《物理学报》2011,60(8):80302-080302
提出了一种基于量子纠缠交换的仲裁签名协议. 以Bell态为基础,首先将待签消息利用幺正算符序列进行编码,通过算符序列对Bell态进行调制,再通过对量子信息加密产生签名.验证者将签名信息与仲裁者通过纠缠交换所产生的关联态相结合,通过Bell测量来对签名的真实性进行验证.算法利用量子加密保障了真实签名的不可伪造性,同时通过仲裁的参与结合量子密钥有效解决了双方的抵赖问题,方案还能够有效实现对通信双方隐私信息的保护. 关键词: 量子密码 量子签名 纠缠交换  相似文献   

6.
We present a scheme for teleporting an unknown, two-particle entangled state with a message from a sender (Alice) to a receiver (Bob) via a six-particle entangled channel. We also present another scheme for teleporting an unknown one-particle entangled state with a message transmitted in a two-way form between the same sender and receiver via a five-qubit cluster state. One-way hash functions, Bell-state measurements, and unitary operations are adopted in these two schemes. Our schemes use the physical characteristics of quantum mechanics to implement delegation, signature, and verification processes. Moreover, a quantum key distribution protocol and a one-time pad are adopted in these schemes.  相似文献   

7.
This study points out that a dishonest party in Yang and Wen's arbitrated quantum signature scheme [Opt. Comm. 283, (2010) 3198-3201] can reveal the other party's secret key without being detected by using the Trojan-horse attacks. Accordingly, the security requirements of a quantum signature, i.e. unforgeability and undeniability, may not be satisfied in their scheme.  相似文献   

8.
Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.  相似文献   

9.
In most situations, the signer is generally a single person. However, when the message is written on behalf of an organization, a valid message may require the approval or consent of several persons. Threshold signature is a solution to this problem. Generally speaking, as an authority which can be trusted by all members does not exist, a threshold signature scheme without a trusted party appears more attractive. Following some ideas of the classical Shamir’s threshold signature scheme, a quantum threshold group signature one is proposed. In the proposed scheme, only t or more of n persons in the group can generate the group signature and any t − 1 or fewer ones cannot do that. In the verification phase, any t or more of n signature receivers can verify the message and any t − 1 or fewer receivers cannot verify the validity of the signature. Supported by the National Basic Research Program of China (973 Program)(Grant No. 2007CB311100), the National High-Technology Research and Development Program of China (Grant Nos. 2006AA01Z419 and 2006AA01Z440), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004), the Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No. 97007016200701), the Doctoral Scientific Research Activation Foundation of Beijing University of Technology (Grant No. 52007016200702), the ISN Open Foundation, and the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601)  相似文献   

10.
量子数字签名研究进展   总被引:1,自引:0,他引:1  
量子数字签名是量子理论与经典数字签名的结合,其目的是利用量子效应达到无条件安全的信息交互。介绍了目前提出的几种量子数字签名协议,详细分析了这几种协议的优缺点和效率,提出了量子数字签名协议设计的具体要求,并展望了此领域今后的发展方向。  相似文献   

11.
Motivated by the revealing features of the continuous-variable (CV) quantum cryptography, we suggest an arbitrated quantum signature (AQS) protocol with CV coherent states. It involves three participants, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie who is trustworthy by Alice and Bob. Three phases initializing phase, signing phase and verifying phase are included in our protocol. The security of the signature scheme is guaranteed by the generation of the shared keys via the CV-based quantum key distribution (CV-QKD) and the implementation process of the CV-based quantum teleportation as well. Security analysis demonstrates that the signature can be neither forged by anyone nor disavowed by the receiver and signer. Moreover, the authenticity and integrality of the transmitted messages can be ensured. The paper shows that a potential high-speed quantum signature scheme with high detection efficiency and repetition rate can be realized when compared to the discrete-variable (DV) quantum signature scheme attributing to the well characteristics of CV-QKD.  相似文献   

12.
Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.  相似文献   

13.
Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and Do S attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.  相似文献   

14.
An arbitrated quantum signature (AQS) scheme is demonstrated on a basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. In this scheme, the signatory signs the message while the receiver verifies the signature’s validity with the aid of the trusty arbitrator who plays a crucial role when a possible dispute arises. Analysis shows that the signature can neither be forged nor disavowed by any malicious attackers.  相似文献   

15.
A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.  相似文献   

16.
Quantum digital signatures (QDS) are able to verify the authenticity and integrity of a message in modern communication. However, the current QDS protocols are restricted by the fundamental rate-loss bound and the secure signature distance cannot be further improved. We propose a twin-field quantum digital signature (TF-QDS) protocol with fully discrete phase randomization and investigate its performance under the two-intensity decoy-state setting. For better performance, we optimize intensities of the signal state and the decoy state for each given distance. Numerical simulation results show that our TF-QDS with as few as six discrete random phases can give a higher signature rate and a longer secure transmission distance compared with current quantum digital signatures (QDSs), such as BB84-QDS and measurement-device-independent QDS (MDI-QDS). Moreover, we provide a clear comparison among some possible TF-QDSs constructed by different twin-field key generation protocols (TF-KGPs) and find that the proposed TF-QDS exhibits the best performance. Conclusively, the advantages of the proposed TF-QDS protocol in signature rate and secure transmission distance are mainly due to the single-photon interference applied in the measurement module and precise matching of discrete phases. Besides, our TF-QDS shows the feasibility of experimental implementation with current devices in practical QDS system.  相似文献   

17.
Arbitrated quantum signature (AQS) is a cryptographic scenario in which the sender (signer), Alice, generates the signature of a message and then a receiver (verifier), Bob, can verify the signature with the help of a trusted arbitrator, Trent. In this paper, we point out there exist some security weaknesses in two AQS protocols. Our analysis shows Alice can successfully disavow any of her signatures by a simple attack in the first protocol. Furthermore, we study the security weaknesses of the second protocol from the aspects of forgery and disavowal. Some potential improvements of this kind of protocols are given. We also design a new method to authenticate a signature or a message, which makes AQS protocols immune to Alice’s disavowal attack and Bob’s forgery attack effectively.  相似文献   

18.
Recently, to resist attacks using the anticommutativity of nontrivial Pauli operators, an arbitrated quantum signature scheme with Bell states (Int. J. Theor. Phys. 53(5), 1569–1579 2014) was proposed. The scheme randomly adds Hadamard operations to strengthen the quantum one-time pad encryption. Based on this, it claimed that the scheme could resist the receiver’s existential forgery and no party had chances to change the message without being discovered. This paper introduces two security issues of the scheme: It can’t resist the signer’s disavowal and the receiver’s existential forgery. Furthermore, we show that the scheme is still vulnerable to the receiver’s existential forgery even if the Hadamard operation in the encryption algorithm is replaced with any 2nd-order unitary operation.  相似文献   

19.
Very recently, an arbitrated quantum signature (AQS) scheme of classical message with an untrusted arbitrator was presented (Yang et al. in Eur. Phys. J., D, At. Mol. Opt. Plasma Phys. 61(3):773–778, 2011). In this paper, the security of the AQS scheme with an untrusted arbitrator is analyzed. An AQS scheme with an untrusted arbitrator should satisfy the unforgeable property and undeniable property. In particular, the malicious verifier can not modify a message and its signature to produce a new message with a valid signature, and the dishonest signer who really has sent the message to the verifier which the verifier accepted as an authentic one cannot later deny having sent this message. However, we show that, in the AQS scheme with an untrusted arbitrator, the dishonest signer can successfully disavow his/her signature and the malicious verifier can counterfeit a valued signature for any message by known message attack when he has received a message-signature pair. Then, we suggest an improved AQS scheme of classical message with an untrusted arbitrator which can solve effectively the two problems raised above. Furthermore, we prove the security of the improved scheme.  相似文献   

20.
Quantum signature (QS) is used to authenticate the identity of the originator, ensure data integrity and provide non-repudiation service with unconditional security. Depending on whether a trusted third party named arbitrator is involved or not, QS is classified as arbitrated QS and true QS. This paper studies existence problem about the two kinds of QS and contributes to two points: (1) a basic framework is provided to analyze the possibility of arbitrated QS on signing quantum messages; (2) disagreement between the impossibility of true QS and an existing true QS scheme is solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号