首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.  相似文献   

2.
After presenting the infinite operator-sum form solution to the Milburn equation dp/dt=γ(UρU^f - ρ)=γU[p, Uf], where U=e^-iH/hγ, and verifying that this equation preserves the three necessary conditions of density operators during time evolution, we prove that the yon Neumann entropy increases with time. We also point out that if A and B both obey the Milburn equation, then theproduct AB obeys (d/dt)(AB) = γU[AB, U^f]-(1/γ)(dA/dt)(dB/dt), which violates the Milburn equation, this reflects that a pure state will evolve to a mixture in general  相似文献   

3.
We present a scheme for remotely preparing a state via the controls of many agents in a network. In the scheme, the agents' controls are achieved by utilizing quantum key distribution. Generally, the original state can be restored by the receiver with probability 1/2 if all the agents collaborate. However, for certain type of original states the restoration probability is unit.  相似文献   

4.
F.N.  Fagundes  R.O.  Francisco  B.B.  Dilem  J.A.  Nogueira 《理论物理通讯》2010,(12):1071-1074
In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enough (a = e2Mφ-1, where M, is the mass of the scalar field generated by the Coleman-Weinberg mechanism).  相似文献   

5.
Stability and hydrodynamic behaviors of different lattice Boltzmann models including the lattice Boltzmann equation (LBE), the differential lattice Boltzmann equation (DLBE), the interpolation-supplemented lattice Boltzmann method (ISLBM) and the Taylor series expansion- and least square-based lattice Boltzmann method (TLLBM) are studied in detail. Our work is based on the von Neumann linearized stability analysis under a uniform flow condition. The local stability and hydrodynamic (dissipation) behaviors are studied by solving the evolution operator of the linearized lattice Boltzmann equations numerically. Our investigation shows that the LBE schemes with interpolations, such as DLBE, ISLBM and TLLBM, improve the numerical stability by increasing hyper-viscosities at large wave numbers (small scales). It was found that these interpolated LBE schemes with the upwind interpolations are more stable than those with central interpolations because of much larger hyper-viscosities.  相似文献   

6.
We analyze the numerical stability of Finite Difference Lattice Boltzmann Method (FDLBM) by means of von Neumann stability analysis. The stability boundary of the FDLBM depends on the BGK relaxation time, the CFL number, the mean flow velocity, and the wavenumber. As the BGK relaxation time is increased at constant CFL number, the stability of the central difference LB scheme may not be ensured. The limits of maximum stable velocity are obtained around 0.39, 0.43, and 0.43 for the central difference, for the explicit upwind difference, and for the semi-implicit upwind difference schemes, respectively. We derive artificial viscosities for every difference scheme and investigate their influence on numerical stability. The requirements for artificial viscosity is consistent with the conditions derived from von Neumann stability analysis. This analysis elucidates that the upwind difference schemes are suitable for simulation of high Reynolds number flows.  相似文献   

7.
We have studied the generation of multipartite entangled states for the superconducting phase qubits. The experiments performed in this direction have the capacity to generate several specific multipartite entangled states for three and four qubits. Our studies are also important as we have used a computable measure of genuine multipartite entanglement whereas all previous studies analyzed certain probability amplitudes. As a comparison, we have reviewed the generation of multipartite entangled states via von Neumann projective measurements.  相似文献   

8.
Soliton theory plays an important role in nonlinear physics. The elastic interaction among solitons is one of the most important properties for integrable systems. In this Letter, an elastic vortex interaction model is proposed. It is found that the momenta, vortex momenta and the energies of every one vortex and the interaction energies of every two vortices are conserved.  相似文献   

9.
A highly efficient three-dimensional (3D) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model isvalidated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.  相似文献   

10.
A new axiomatic characterization with a minimum of conditions for entropy as a function on the set of states in quantum mechanics is presented. Traditionally unspoken assumptions are unveiled and replaced by proven consequences of the axioms. First the Boltzmann–Planck formula is derived. Building on this formula, using the Law of Large Numbers—a basic theorem of probability theory—the von Neumann formula is deduced. Axioms used in older theories on the foundations are now derived facts.  相似文献   

11.
The nonlinear Boltzmann equation for a rarefied gas is investigated in the fluid dynamical limit to the level of compressible Euler equation locally in time, as the mean free path tends to zero. The nonlinear hyperbolic conservation laws obtained as the limit are also the first approximation of the Chapman-Enskog expansion.  相似文献   

12.
We study shock reflection for the two 2D Burgers equation. This model equation is an asymptotic limit of the Euler equations, and retains many of the features of the full equations. A von Neumann type analysis shows that the 2D Burgers equation has detachment, sonic, and Crocco points in complete analogy with gas dynamics. Numerical solutions support the detachment/sonic criterion for transition from regular to Mach reflection. There is also strong numerical evidence that the reflected shock in the 2D Burgers Mach reflection forms a smooth wave near the Mach stem, as proposed by Colella and Henderson in their study of the Euler equations.  相似文献   

13.
A Hermite WENO reconstruction-based discontinuous Galerkin method RDG(P1P2), designed not only to enhance the accuracy of discontinuous Galerkin method but also to ensure linear stability of the RDG method, is presented for solving the compressible Euler equations on tetrahedral grids. In this RDG(P1P2) method, a quadratic polynomial solution (P2) is first reconstructed using a least-squares method from the underlying linear polynomial (P1) discontinuous Galerkin solution. By taking advantage of handily available and yet invaluable information, namely the derivatives in the DG formulation, the stencils used in the reconstruction involve only von Neumann neighborhood (adjacent face-neighboring cells) and thus are compact and consistent with the underlying DG method. The final quadratic polynomial solution is then obtained using a WENO reconstruction, which is necessary to ensure linear stability of the RDG method. The developed RDG method is used to compute a variety of flow problems on tetrahedral meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical experiments demonstrate that the developed RDG(P1P2) method is able to maintain the linear stability, achieve the designed third-order of accuracy: one order accuracy higher than the underlying DG method without significant increase in computing costs and storage requirements.  相似文献   

14.
This paper at first shows the details of finite volume-based lattice Boltzmann method (FV-LBM) for simulation of compressible flows with shock waves. In the FV-LBM, the normal convective flux at the interface of a cell is evaluated by using one-dimensional compressible lattice Boltzmann model, while the tangential flux is calculated using the same way as used in the conventional Euler solvers. The paper then presents a platform to construct one-dimensional compressible lattice Boltzmann model for its use in FV-LBM. The platform is formed from the conservation forms of moments. Under the platform, both the equilibrium distribution functions and lattice velocities can be determined, and therefore, non-free parameter model can be developed. The paper particularly presents three typical non-free parameter models, D1Q3, D1Q4 and D1Q5. The performances of these three models for simulation of compressible flows are investigated by a brief analysis and their application to solve some one-dimensional and two-dimensional test problems. Numerical results showed that D1Q3 model costs the least computation time and D1Q4 and D1Q5 models have the wider application range of Mach number. From the results, it seems that D1Q4 model could be the best choice for the FV-LBM simulation of hypersonic flows.  相似文献   

15.
Lattice Boltzmann model for combustion and detonation   总被引:1,自引:0,他引:1  
In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, Δ m *, defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.  相似文献   

16.
The method for integration of nonlinear equations using the generalized Cole-Hopf substitutions is extended to the case of dimension 1+2. The general structure of the solutions of the Euler equations for two-dimensional compressible fluid flows is analyzed. A method is developed for constructing new exact solutions describing two-dimensional compressible and incompressible flows.  相似文献   

17.
We first consider the Boltzmann equation with a collision kernel such that all kinematically possible collisions are run at equal rates. This is the simplest Boltzmann equation having the compressible Euler equations as a scaling limit. For it we prove a stability result for theH-theorem which says that when the entropy production is small, the solution of the spatially homogeneous Boltzmann equation is necessarily close to equilibrium in the entropie sense, and therefore strongL 1 sense. We use this to prove that solutions to the spatially homogeneous Boltzmann equation converge to equilibrium in the entropie sense with a rate of convergence which is uniform in the initial condition for all initial conditions belonging to certain natural regularity classes. Every initial condition with finite entropy andp th velocity moment for some p>2 belongs to such a class. We then extend these results by a simple monotonicity argument to the case where the collision rate is uniformly bounded below, which covers a wide class of slightly modified physical collision kernels. These results are the basis of a study of the relation between scaling limits of solutions of the Boltzmann equation and hydrodynamics which will be developed in subsequent papers; the program is described here.On leave from School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.On leave from C.F.M.C. and Departamento de Matemática da Faculdade de Ciencias de Lisboa, 1700 Lisboa codex, Portugal.  相似文献   

18.
We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.  相似文献   

19.
Stability is one of the main concerns in the lattice Boltzmann method (LBM). The objectives of this study are to investigate the linear stability of the lattice Boltzmann equation with the Bhatnagar–Gross–Krook collision operator (LBGK) for the advection–diffusion equation (ADE), and to understand the relationship between the stability of the LBGK and non-negativity of the equilibrium distribution functions (EDFs). This study conducted linear stability analysis on the LBGK, whose stability depends on the lattice Peclet number, the Courant number, the single relaxation time, and the flow direction. The von Neumann analysis was applied to delineate the stability domains by systematically varying these parameters. Moreover, the dimensionless EDFs were analyzed to identify the non-negative domains of the dimensionless EDFs. As a result, this study obtained linear stability and non-negativity domains for three different lattices with linear and second-order EDFs. It was found that the second-order EDFs have larger stability and non-negativity domains than the linear EDFs and outperform linear EDFs in terms of stability and numerical dispersion. Furthermore, the non-negativity of the EDFs is a sufficient condition for linear stability and becomes a necessary condition when the relaxation time is very close to 0.5. The stability and non-negativity domains provide useful information to guide the selection of dimensionless parameters to obtain stable LBM solutions. We use mass transport problems to demonstrate the consistency between the theoretical findings and LBM solutions.  相似文献   

20.
An optimai current lattice model with backward-looking effect is proposed to describe the motion of traffic flow on a single lane highway. The behavior of the new model is investigated anaiytically and numerically. The stability, neutrai stability, and instability conditions of the uniform flow are obtained by the use of linear stability theory. The stability of the uniform flow is strengthened effectively by the introduction of the backward-looking effect. The numerical simulations are carried out to verify the validity of the new model. The outcomes of the simulation are corresponding to the linearly analyticai results. The analytical and numerical results show that the performance of the new model is better than that of the previous models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号