首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum correlations in an anisotropic Heisenberg XY Z chain is investigated by use of concurrence C and measurement-induced disturbance(MID). We show that the behaviors of the MID are remarkably different from the concurrence. Firstly, it is shown that there is a revival phenomenon in the concurrence but not in the MID, which is suitable for both the ground state case and the finite temperature case. Based on the analysis of the ground-state C and MID structures,we illustrate the reason why the ground-state MID does not show a revival phenomenon in detail. Then we explore different effects of the external and self parameters on entanglement and MID behaviors. It can be shown that the region of MID is evidently larger than the case of concurrence, and that the concurrence signals a quantum phase transition even at finite T while MID does not. Cases where the concurrence finally maintains one nonzero constant value regardless of the value of the variable B for a constant Jz, while MID decreases monotonously to zero with increasing B. We also show that if B can take a proper range of values, the concurrence decreases with the improvement of the anisotropic parameter γ, whereas an opposite effect for MID behaviors is presented.  相似文献   

2.
The exchange bias (EB) of the ferromagnetic (FM)/antiferromagnetic (AFM) bilayers in a compensated case is studied by use of the many-body Green's function method of quantum statistical theory. The so-called compensated case is that there is no net magnetization on the AFM side of the interface. Our conclusion is that the EB in this case is primarily from the asymmetry of the interracial exchange coupling strengths between the FM and the two sublattices of the AFM. The effects of the layer thickness, temperature and the interracial coupling strength oi2 the exchange bias HE are investigated. The dependence of HE on the FM layer thickness and temperature is qualitatively in agreement with experimental results. HE is nearly inversely proportional to FM thickness. When temperature varies, both HE and He decrease with temperature increasing. The anisotropy of the FM layer only slightly influence He, but does not influence HE.  相似文献   

3.
The thermal quantum discord (QD) is studied in a two-qubit Heisenberg XXZ system with DzyaloshinskiiMoriya (DM) interaction. We compare the thermal QD with thermal entanglement in this system and find remarkable differences between them. For instance, we show situations where QD decreases asymptotically to zero with temperature T while entanglement decreases to zero at the point of critical temperature, situations where QD decreases with certain tunable parameters such as Dx and Dx when entanglement increases. We find that the characteristic of QD is exotic in this system and this possibly offers a potential solution to enhance entanglement of a system. We also show that tunable parameter Dx is more efficient than parameter Dz in most regions for controlling the QD.  相似文献   

4.
We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (S(i-1)·S(i))(S(i)·S(i+1))+H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S+1)-2]. This result generalizes the Majumdar-Ghosh point of the J1-J2 chain, to which the present model reduces for S=1/2. For S=1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c=3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.  相似文献   

5.
The effects of spin-spin interaction on thermed entanglement of a two-qubit Heisenberg XYZ model with different inhomogeneous magnetic fields are investigated. It is shown that the entanglement is dependent on the spin-spin interaction and the inhomogeneous magnetic fields. The larger the Ji (i-axis spin-spin interaction), the higher critical value the Bi (i-axis uniform magnetic field) has. Moreover, in the weak-field regime, the larger Ji corresponds to more entanglement, while in the strong-field regime, different Ji correspond to the same entanglement. In addition, it is found that with the increase of Ji, the concurrence can approach the maximum value more rapidly for the smaller Bi, and can reach a larger value for the smaller bi (i-axis nonuniform magnetic field). So we can get more entanglement by increasing the spin-spin interaction Ji, or by decreasing the uniform magnetic field Bi and the nonuniform magnetic field hi.  相似文献   

6.
In this paper, we present a comprehensive investigation of the effects of the transverse correlation function (TCF) on the thermodynamic properties of Heisenberg antiferromagnetic (AFM) and ferromagnetic (FM) systems with cubic lattices. The TCF of an FM system is positive and increases with temperature, while that of an AFM system is negative and decreases with temperature. The TCF lowers internal energy, entropy and specific heat. It always raises the free energy of an FM system but raises that of an AFM system only above a specific temperature when the spin quantum number is S 〉 1. Comparisons between the effects of the TCFs on the FM and AFM systems are made where possible.  相似文献   

7.
江学范  刘先锋  吴银忠  韩玖荣 《中国物理 B》2012,21(7):77502-077502
The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradient approxi- mations (GGA)+U scheme. The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and spin frustration. It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction. Using Monte Carlo simulation, we obtain the Neel temperature to be 29.9 K, which accords well with the experimental value of 24 K. Based on non- collinear magnetic structure calculations, we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state, which is consistent with the experimental observations. Due to intra-layer geometric spin frustration, parallel helical-spin chains arise along the a, b, or a+ b directions, each with a screw-rotation angle of about I20°. Our calculations of the density of states show that the spin frustration plays an important role in the change of d-p hybridization, while the spin-orbit coupling has a very limited influence on the electronic structure.  相似文献   

8.
Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future.  相似文献   

9.
The spin dynamics of the prototypical quasi-one-dimensional antiferromagnetic Heisenberg spin S=1/2 chain KCuF3 is investigated by electron spin resonance spectroscopy. Our analysis shows that the peculiarities of the spin dynamics require a new dynamical form of the antisymmetric anisotropic spin-spin interaction. This dynamical Dzyaloshinsky-Moriya interaction is related to strong oscillations of the bridging fluorine ions perpendicular to the crystallographic c axis. This new mechanism allows us to resolve consistently the controversies in observation of the magnetic and structural properties of this orbitally ordered perovskite compound.  相似文献   

10.
The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).  相似文献   

11.
The spin distribution of the evaporation residue cross section of nuclei ^194pb, ^200Pb, ^206Pb, and ^200 Os are calculated via a Langevin equation coupled with a statistical decay model. It is shown that with increasing the neutronto-proton ratio (N/Z) of the system, the sensitivity of the significantly. Moreover, for ^200Os this spin distribution is no spin distribution to the nuclear dissipation is decreased longer sensitive to the nuclear dissipation. These results suggest that to obtain a more accurate pre-saddle viscosity coefficient through the measurement of the evaporation residue spin distribution, it is best to yield those compound systems with low N/Z.  相似文献   

12.
Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.  相似文献   

13.
This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.  相似文献   

14.
The dynamical properties of one-dimensional random transverse Ising model (RTIM) with a double-Gaussian disorder is investigated by the recursion method. Based on the first twelve recurrences derived analytically, the spin autocorrelation function (SAF) and associated spectral density at high temperature were obtained numerically. Our results indicate that when the standard deviation σg (or OrB) of the exchange couplings Ji (or the random transverse fields Bi) is small, no long-time tail appears in the SAE The spin system undergoes a crossover from a central-peak behavior to a collectivemode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when σJ (or σB) is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large σJ or a disordered behavior for large σB. In this instance, SAFs exhibit a similar long-time tail, i.e., C(t) ~ t ^-2 for large t. Similar properties are obtained when Ji (or Bi) satisfy the double-exponential distribution or the double-uniform distribution. Besides, when both the standard deviations and the mean values of the exchange couplings are small, the effects of the Gaussian random bonds may drive the system undergo two crossovers from a triplet state to a doublet state, and then to a collective-mode state.  相似文献   

15.
A. Deur 《中国物理 C》2009,33(12):1261-1266
We present recent results from Jefferson Lab on sum rules related to the spin structure of the nucleon. We then discuss how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.  相似文献   

16.
Using the effective non-Markovian measure proposed by Breuer et al. recently, we study the memory effect of a central qubit system coupled to a spin chain environment with Dzyaloshinskii-Moriya interaction in a transverse field. It is discovered that the central qubit system presents different memory effects in different environment phases with the different oscillatory behaviors of the decoherence factor. Moreover, it is revealed that the Dzyaloshinskii-Moriya interaction has a prominent influence on the memory effect of a central qubit system via modifying the amplitude and period of the decoherence factor under certain conditions.  相似文献   

17.
柴政  胡茂金  王瑞强  胡梁宾 《中国物理 B》2014,23(2):27201-027201
We study the theoretical effect of k-cubic (i.e, cubic-in-momentum) Dresselhaus spin-orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin-orbit coupling, and after taking the effect of k-cubic Dresselhaus spin-orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results.  相似文献   

18.
The approximate analytical solutions of the Dirac equation with the Poeschl-Teller potential is presented for arbitrary spin-orbit quantum number κ within the framework of the spin symmetry concept. The energy eigenvalues and the corresponding two Dirac spinors are obtained approximately in closed forms. The limiting cases of the energy eigenvalues and the two Dirac spinors are briefly discussed.  相似文献   

19.
The bound state solutions of Dirac equations for a trigonometric Scarf potential with a new tensor potential under spin and pseudospin symmetry limits are investigated using Romanovski polynomials. The proposed new tensor potential is inspired by superpotential form in supersymmetric(SUSY) quantum mechanics. The Dirac equations with trigonometric Scarf potential coupled by a new tensor potential for the pseudospin and spin symmetries reduce to Schrdinger-type equations with a shape invariant potential since the proposed new tensor potential is similar to the superpotential of trigonometric Scarf potential. The relativistic wave functions are exactly obtained in terms of Romanovski polynomials and the relativistic energy equations are also exactly obtained in the approximation scheme of centrifugal term. The new tensor potential removes the degeneracies both for pseudospin and spin symmetries.  相似文献   

20.
Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even resonance occurs in the presence of a distribution of transverse anisotropic parameters, while the odd resonance always shows exponential relaxation. Magnetic relaxation under a sweeping field is also studied. The variation of the relaxation curve with the increasing distribution width of the local stray field for even resonance is qualitatively different from that of the odd resonance. The theoretical result on even resonance is in agreement with experimental results on Fe8 system, while the prediction for odd resonance awaits the experimental verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号