首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (3TC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s ≤ 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → Tc (Tc is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant △= [1 - y∏^ni=1(kT/εi)^1/tiГ(1/ti+1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, ε is the external field's energy), is obtained. The potential makes the JTC increase when △ 〉 0, on the contrary, it makes the JTC decrease when A 〈△. (iii) In the homogenous strong external potential, the JTC gets the maximum on the condition of kTεi〈〈1.  相似文献   

2.
The vibrational dynamics of HOCl and HOBr between bending and OCl/OBr stretching coordinates with anharmonicity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation.  相似文献   

3.
Two series of Cdl-xInxNNi3 (0 〈 x 〈 0.2) and Cd1_yCuyNNi3 (0 〈 y 〈 0.2) samples were prepared from CdO, In203, CuO, and nickel powders under NH3 atmosphere at 773 K. The structural and physical properties were investigated by means of X-ray powder diffraction temperature-dependent resistivity and magnetic measurements. X-ray powder diffraction results showed that the Cd1-xInxNNi3 and Cd1_yCuyNNi3 compounds have a typical antiperovskite structure, and the CdNNi3, Cd0.9In0.1NNi3, and Cd0.9Cu0.1NNia compounds show metallic temperature-dependent resistivity and exhibit a Fermi liquid behavior at low temperature. In contrast to the paramagnetism previously reported, the CdNNi3 sample exhibits very soft and weak ferromagnetism, and no superconductivity was found in the Cd1-xInxNNi3 and Cdl-yCuyNNi3 samples down to 2 K. Each sample exhibited very soft and weak ferromagnetism, and the temperature dependence of the magnetization of the Cd1-xInxNNi3 and Cd1_yCuyNNi3 samples can be well fitted to the combination of a Bloch term and a Curie-Weiss term.  相似文献   

4.
Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta Singwi (VS), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li --→ K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.  相似文献   

5.
In the presented model the wave function describing the electron is a superposition of contributions from individual components of the system, in the case of metals - lattice ions and in this sense refers not to a single electron, but rather to the system as a whole. An unconventional approach to the Schro¨dinger equation can provide a simple analytical relationship between the total energy of the electron and the wave number. This expression can directly determine the basic parameters such as Fermi radius, the screening radius or work function and also produce a graphical interpretation of the Fermi surface.  相似文献   

6.
The effects of an anti-hydrogen bond on the v1 v12 Fermi resonance (FR) of pyridine are experimentally investigated by using Raman scattering spectroscopy. Three systems, pyridine/water, pyridine/formamide, and pyridine/carbon tetrachloride, provide varying degrees of strength for the diluent-pyridine anti-hydrogen bond complex. Water forms a stronger anti-hydrogen bond with pyridine than with formamide, and in the case of adding non-polar solvent carbon tetrachloride, which is neither a hydrogen bond donor nor an acceptor and incapable of forming a hydrogen bond with pyridine, the intermolecular distance of pyridine will increase and the interaction of pyridine molecules will reduce. The dilution studies are performed on the three systems. Comparing with the values of the Fermi coupling coefficient W of the ring breathing mode v1 and triangle mode v12 of pyridine at different volume concentrations, which are calculated according to the Bertran equations, in three systems, we find that the solution with the strongest anti-hydrogen bond, water, shows the fastest change in the v1-v12 Fermi coupling coefficient W with the volume concentration varying, followed by the formamide and carbon tetrachloride solutions. These results suggest that the stronger anti-hydrogen bond-forming effect will cause a greater reduction in the strength of the v1-v12 FR of pyridine. According to the mechanism of the formation of an anti-hydrogen bond in the complexes and the FR theory, a qualitative explanation for the anti-hydrogen bond effect in reducing the strength of the v1 - v12 FR of pyridine is given.  相似文献   

7.
The tunneling dynamics of superfluid Fermi gas in a triple-well potential in the unitarity regime is investigated in the present paper. The fixed points of the (0, 0) mode and the (∏, ∏) mode are given. We find that the interaction parameter U and the coupling strength k could have an extreme effect on the quantum tunneling dynamics. We also find that, in the zero mode, only Josophson oscillation appears. However, for the ∏ mode, the trapping phenomena take place. An irregular oscillation of the particle number in each well could appear by adjusting the scanning period T* . It is noted that if the scanning period is less than a critical point T , the particle number will come back to the fixed point with small oscillation, while if T T* the particle number cannot come back to the fixed point, but with irregular oscillations. The dependence of the critical point T* on the system parameter of coupling strength k is numerically given.  相似文献   

8.
We show that there exists a systematic expansion around four spatial dimensions for Fermi gas in the unitarity regime. We perform the calculations to leading and next-to-leading orders in the expansion over E = 4-d, where d is the dimensionality of space. We find the ratio of chemical potential and Fermi energy to be mu/epsilon(F) =1/2 (E 3/2) + 1/16 (E 5/2) lnE -0.0246E (5/2) + ... and the ratio of the gap in the fermion quasiparticle spectrum and the chemical potential to be Delta/mu =2E(-1) - 0.691 + ... . The minimum of the fermion dispersion curve is located at |p|=(2mepsilon(0))(1/2), where epsilon_(0)/mu=2+O(E). Extrapolation to d=3 gives results consistent with Monte Carlo simulations.  相似文献   

9.
Graphene on gallium nitride(GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graphene on GaN without an extra catalyst by chemical vapor deposition. Raman spectra indicate that the graphene films are uniform and about 5–6 layers in thickness. Meanwhile, the effects of growth temperatures on the growth of graphene films are systematically studied, of which 950℃ is found to be the optimum growth temperature. The sheet resistance of the grown graphene is 41.1Ω/square,which is close to the lowest sheet resistance of transferred graphene reported. The mechanism of graphene growth on GaN is proposed and discussed in detail. XRD spectra and photoluminescence spectra indicate that the quality of GaN epi-layers will not be affected after the growth of graphene.  相似文献   

10.
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.  相似文献   

11.
Within the framework of finite temperature field theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential. The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient. The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively.  相似文献   

12.
The effects of V/Ill growth flux ratio on a-plane GaN films grown on r-plane sapphire substrates with an InGaN interlayer are investigated. The surface morphology, crystalline quality, strain states, and density of basal stacking faults were found to depend heavily upon the V/III ratio. With decreasing V/III ratio, the surface morphology and crystal quality first improved and then deteriorated, and the density of the basal-plane stacking faults also first decreased and then increased. The optimal V/III ratio growth condition for the best surface morphology and crystalline quality and the smallest basal-plane stacking fault density of a-GaN films are found. We also found that the formation of basal-plane stacking faults is an effective way to release strain.  相似文献   

13.
We present in this paper a study of the structural and photoluminescence (PL) properties of terbium (Tb) doped zinc oxide (ZnO) nanoparticles synthesized by a simple low temperature chemical precipitation method, using zinc acetate and terbium nitrate in an isopropanol medium with diethanolamine (DEA) as the capping agent at 60 ℃. The as-prepared samples were heat treated and the PL of the annealed samples were studied. The prepared nanoparticles were characterized with X-ray diffraction (XRD). The XRD patterns show the pattern of typical ZnO nanoparticles and correspond with the standard XRD pattern given by JCPDS card No. 36-1451, showing the hexagonal phase structure. The PL intensity was enhanced due to Tb^3+ doping, and it decreased at higher concentrations of Tb^3+ doping after reaching a certain optimum concentration. The PL spectra of Tb^3+ doped samples exhibited blue, bluish green, and green emissions at 460 nm (5^D3 - 7^F3), 484 nm (5^D4 - 7^F6), and 530 nm (5^D4 - 7^F5), respectively, which were more intense than the emissions for the undoped ZnO sample. Based on the results, an energy level schematic diagram was proposed to explain the possible electron transition processes.  相似文献   

14.
We extend the method that Banerjee and Majhi have used to discuss Hawking radiation. Under the condition that the total energy and electrical charge of spacetime are conserved, we investigate Hawking radiation of the charged black hole by a new Tortoise coordinate transformation. Taking the reaction of the radiation of the particle to the spacetime into consideration, we not only derive the radiation spectrum that satisfies the unitary principle in quantum mechanics but also show that the contribution of ingoing particles is equal to the one of outgoing particles on the similar chemical potential term in radiation spectrum caused by charged particles.  相似文献   

15.
This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.  相似文献   

16.
Nonpolar (1120) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of the samples grown on etched substrates compared with those of the sample without etching, both on-axis and off-axis, indicating the reduced dislocation densities and improved crystalline quality of these samples. The spatial mapping of the E2 (high) phonon mode demonstrates the smaller line width with a black background in the wing region, which testifies the reduced dislocation densities and enhanced crystalline quality of the epitaxial lateral overgrowth areas. Raman scattering spectra of the E2 (high) peaks exhibit in-plane compressive stress for all the overgrowth samples, and the E2 (high) peaks of samples grown on etched substrates shift toward the lower frequency range, indicating the relaxations of in-plane stress in these GaN films. Furthermore, room temperature photoluminescence measurement demonstrates a significant decrease in the yellow-band emission intensity of a-plane GaN grown on etched templates, which also illustrates the better optical properties of these samples.  相似文献   

17.
王路  欧阳颀 《中国物理 B》2010,19(10):610-616
A typical biological cell lives in a small volume at room temperature; the noise effect on the cell signal transduction pathway may play an important role in its dynamics. Here, using the transforming growth factor-β signal transduction pathway as an example, we report our stochastic simulations of the dynamics of the pathway and introduce a linear noise approximation method to calculate the transient intrinsic noise of pathway components. We compare the numerical solutions of the linear noise approximation with the statistic results of chemical Langevin equations, and find that they are quantitatively in agreement with the other. When transforming growth factor-β dose decreases to a low level, the time evolution of noise fluctuation of nuclear Smad2-Smad4 complex indicates the abnormal enhancement in the transient signal activation process.  相似文献   

18.
SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.  相似文献   

19.
Morphology of nonpolar (1120) a-plane GaN epilayers on r-plane (1102) sapphire substrate grown by low-pressure metal-organic vapour deposition was investigated after KOH solution etching. Many micron- and nano-meter columns on the a-plane GaN surface were observed by scanning electron microscopy. An etching mechanism model is proposed to interpret the origin of the peculiar etching morphology. The basal stacking fault in the a-plane GaN plays a very important role in the etching process.  相似文献   

20.
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号