首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
As a contribution to the development of novel vanadium complexes with pharmacologically interesting properties, two neutral dioxovanadium(V) complexes [VO2(Hpydx-sbdt)] (1) and [VO2(Hpydx-smdt)] (3) [H2pydx-sbdt (I) and H2pydx-smdt (II) are the Schiff bases derived from pyridoxal and S-benzyl- or S-methyldithiocarbazate] have been synthesized by the reaction of [VO(acac)2] and the potassium salts of the ligands in methanol followed by aerial oxidation. Heating of the methanolic solutions of these complexes yields the oxo-bridged binuclear complexes [{VO(pydx-sbdt)}2mu-O] (2) and [{VO(pydx-smdt)}2mu-O] (4). The crystals and molecular structures of 1, 3 x 1.5H2O, and 4 x 2CH3OH have been determined, confirming the ONS binding mode of the dianionic ligands in their thioenolate form. The ring nitrogen of the pyridoxal moiety is protonated in complexes 1 and 3. Acidification of 1 and 3 with HCl dissolved in methanol afforded oxohydroxo complexes, while in a methanolic KOH solution, the corresponding dioxo species K[VO2(pydx-sbdt/smdt)] are formed. Treatment of 1 and 3 with H2O2 yields (unstable) oxoperoxovanadium(V) complexes, the formation of which has been established spectrophotometrically. In vitro antiamoebic activities (against HM1:1MSS strain of Entamoeba histolytica) were established for all of the dioxo- and oxovanadium(V) complexes. The complexes 1, 2, and 4 were more effective than metronidazole, a commonly used drug against amoebiasis, suggesting that oxovanadium(V) complexes derived from thiohydrazones may open a new dimension in the therapy of amoebiasis.  相似文献   

2.
Reaction between [VO(acac)2] and H2L (H2L are the hydrazones H2sal-nah I or H2sal-fah II; sal = salicylaldehyde, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) in methanol leads to the formation of oxovanadium(IV) complexes [VOL.H2O](H2L = I: 1, H2L = II: 4). Aerial oxidation of the methanolic solutions of 1 and 4 yields the dinuclear oxo-bridged monooxovanadium(V) complexes [{VOL}2mu-O](H2L = I: 2, H2L = II: 5). These dinuclear complexes slowly convert, in excess methanol, to [VO(OMe)(MeOH)L](H(2)L = I: 9, H(2)L = II: 10), the crystal and molecular structures of which have been determined, confirming the ONO binding mode of the dianionic ligands in their enolate form. Reaction of aqueous K[VO3] with the ligands at pH ca. 7.5 results in the formation of [K(H2O)][VO2L](H2L = I: 3, H2L = II: 6). Treatment of 3 and 6 with H2O2 yields (unstable) oxoperoxovanadium(v) complexes K[VO(O2)L], the formation of which has been monitored spectrophotometrically. Acidification of methanolic solutions of 3 and 6 with HCl affords oxohydroxo complexes, while the neutral complexes [VO2(Hsal-nah)] 7 and [VO2(Hsal-fah)] 8 were isolated on treatment of aqueous solutions of 3 and 6 with HClO4. These complexes slowly transform into 9 and 10 in methanol, as confirmed by 1H, 13C and 51V NMR. The anionic complexes 3 and 6 catalyse the oxidative bromination of salicylaldehyde in water in the presence of H2O2/KBr to 5-bromosalicylaldehyde and 3,5-dibromosalicylaldehyde, a reaction similar to that exhibited by vanadate-dependent haloperoxidases. They are also catalytically active for the oxidation of benzene to phenol and phenol to catechol and p-hydroquinone.  相似文献   

3.
Binuclear, mu-bis(oxo)bis{oxovanadium(V)} complexes [(VOL)2(mu-O)2](2 and 7)(where HL are the hydrazones Hacpy-nah I or Hacpy-fah II; acpy = 2-acetylpyridine, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) were prepared by the reaction of [VO(acac)2] and the ligands in methanol followed by aerial oxidation. The paramagnetic intermediate complexes [VO(acac)(acpy-nah)](1) and [VO(acac)(acpy-fah)](6) have also been isolated. Treatment of [VO(acac)(acpy-nah)] and [VO(acac)(acpy-fah)] with aqueous H2O2 yields the oxoperoxovanadium(V) complexes [VO(O2)(acpy-nah)](3) and [VO(O2)(acpy-fah)](8). In the presence of catechol (H2cat) or benzohydroxamic acid (H2bha), 1 and 6 give the mixed chelate complexes [VO(cat)L](HL =I: 4, HL =II: 9) or [VO(bha)L](HL =I: 5, HL =II: 10). Complexes 4, 5, 9 and 10 slowly convert to the corresponding oxo-mu-oxo species 2 and 7 in DMF solution. Ascorbic acid enhances this conversion under aerobic conditions, possibly through reduction of these complexes with concomitant removal of coordinated catecholate or benzohydroxamate. Acidification of 7 with HCl dissolved in methanol afforded a hydroxo(oxo) complex. The crystal and molecular structure of 2.1.5H2O has been determined, and the structure of 7 re-determined, by single crystal X-ray diffraction. Both of these binuclear complexes contain the uncommon asymmetrical {VO(mu-O)}2 diamond core. The in vitro tests of the antiamoebic activity of ligands I and II and their binuclear complexes 2 and 7 against the protozoan parasite Entamoeba histolytica show that the ligands have no amoebicidal activity while their vanadium complexes 2 and 7 display more effective amoebicidal activity than the most commonly used drug metronidazole (IC50 values are 1.68 and 0.45 microM, respectively vs 1.81 microM for metronidazole). Complexes 2 and 7 catalyse the oxidation of styrene and ethyl benzene effectively. Oxidation of styrene, using H2O2 as an oxidant, gives styrene epoxide, 2-phenylacetaldehyde, benzaldehyde, benzoic acid and 1-phenyl-ethane-1,2-diol, while ethyl benzene yields benzyl alcohol, benzaldehyde and 1-phenyl-ethane-1,2-diol.  相似文献   

4.
Heterobimetallic complexes of a vanadium(V) and rhenium(VII) combination connected by a mu-oxido bridge [LVO(mu-O)ReO 3].H 2O [H 2L = N, N'-ethylene bis(salicylideneimine) (H 2salen) and its methoxy derivative] ( 1, 2) are reported. The compounds have been prepared by a single-pot synthesis in which the precursor [V (IV)OL] complexes are allowed to be oxidized aerially in the presence of added perrhenate. The oxidized [V (V)OL] (+) species accommodate the ReO 4 (-) anion in their vacant coordination site, trans to the terminal oxido group, providing the complexes 1 and 2. The later generates a binuclear oxovanadium(V) compound [H 2en][(TBC)VO(mu-TBC) 2OV(TBC)].5H 2O ( 3) when treated with tetrabromocatechol. Single crystal X-ray diffraction analysis and (1)H NMR spectroscopy have been used to establish their identities. In compound 2, the Re(1)-O(11)-V(1) bridge angle is barely linear [170.2(3) degrees ] with a Re...V separation of 3.9647(9) A. The redox behavior of 1 and 2 are quite interesting, each undergoing two reductions both in the positive potential range at E 1/2 = 0.59 (process I) and E 1/2 = 0.16 V (process II) versus Ag/AgCl reference (corresponding potentials are 0.59 and 0.18 V for 2). Process I has a single-electron stoichiometry involving the [VO(salen)] part of the complexes as established by combined coulometry-Electron Paramagnetic Resonance (EPR) experiments which provide an eight-line isotropic EPR pattern at room temperature ( = 1.967; = 87 x 10 (-4) cm (-1)), characteristic of an unpaired electron being coupled to a vanadium nuclear spin ( (51)V, I = 7/2). The almost linear V-O-Re bridge in 1 and 2 allows this unpaired electron to interact effectively with the neighboring Re nuclear spin, leading to familiar " two-line pattern" superhyperfine coupling ( A ( (185,187)Re) = 20.7 x 10 (-4) cm (-1)). Process II, on the other hand, is based on a Re(VII/VI) electron transfer as confirmed by differential pulse and normal pulse voltammetric experiments.  相似文献   

5.
The oxidation of oxovanadium(IV) complexes [LV(IV)O] (L = tetradentate Schiff-base ligands such as N,N'-ethylenebis(salicylideneaminate)(2-) (salen) and N,N'-2,2-dimethylpropylenebis(salicylideneaminate)(2-) (salpn)) to [LV(V)O](+), believed to be responsible for the voltammetric response near 0.6 V vs Ag/AgCl in CH(2)Cl(2) in the presence of tetrabutylammonium tetrafluoroborate as a supporting electrolyte, is in fact coupled to a homogeneous process where [LVO](+) coordinates BF(4)(-) to form a neutral complex formulated as [LVOBF(4)]. The formation constants for [VO(salen)BF(4)] and [VO(salpn)BF(4)] are evaluated to be K(salen)(-)(1) = 1.1 x 10(2) M(-)(1) and K(salpn)(-)(1) = 1.4 x 10 M(-)(1), respectively. Crystal structure of [VO(salen)BF(4)] reveals that one of the fluorine atoms in BF(4)(-) is so close to the vanadium(V) atom as to be practically bound in the solid state.  相似文献   

6.
The ligand 3-[2,2'-methylenebis(4,6-di- tert-butylphenol)-5- tert-butylsalicylidene-(2,6-diisopropyl)phenylimine] (L(1)H 3) was reacted with MCl 4 (M = Ti, Zr) or MCl 5 (M = Nb, Ta) to give complexes of the type [MCl 2(L(1)H 2) 2] (M = Ti (1); Zr (2)), [NbCl 3( L (1)H)] (3), or [TaCl 4(L(1)H 2)] (4), respectively. Single crystal X-ray diffraction of 1- 4 revealed common "iminium" species resulting in zwitterionic complexes. Reaction of [V(N p-tol)(O n-Pr) 3] with L (1)H3 afforded [{(VN p-tol)(L(1)H)} 2(mu-O n-Pr)2] (5), and a second complex [(VO) 2(mu-O)(L(3)H) 2] (6)(L(3)H being derived from 3-[2,2'-methylenebis(4,6-di-tert-butylphenol)-5-tert-butylsalicylidene- p-tolylimine]). The condensation reaction between 3-[2,2'-methylenebis(4,6-di-tert-butylphenol)-5-tert-butyl-2-hydroxybenzaldehyde] (L(0)H 3) and o-phenylenediamine (1,2-diaminobenzene) afforded two products: a pseudo-16-membered hydrogen bonded macrocyclic structure {1,2-bis-3-[2,2'-methylenebis(4,6-di-tert-butylphenol)-5-tert-butylsalicylidene-benzyldiimine]} (L(5)H6), or the benzimidazolyl bearing ligand (L(6)H 3). The reaction of L (5)H6 or L(6)H 3 with [VO(O n-Pr) 3] under varying conditions produced the complexes [(VO)(L(5)H 4)] (7), [(VO) 2(L(5)H)] (8), or [VO(L(6)H 2) 2] (9). L (0)H 3 was reacted with a number of anilines to give the proligands {3-[2,2'-methylenebis(4,6-di- tert-butylphenol)-5-tert-butylsalicylidene-R-imine]}, where R = NC 6H 5 (L(2)H3), NC 6H 4-Me (L(3)H 3), and NC 6H 2-Me 3 (L(4)H 3). Reactions of these ligands with [VO(O n-Pr) 3] formed bischelating complexes of the form [(VO)(L(2-4)H 2)2] (10, 11, and 12, respectively). The reaction of L (1)H 3 with trimethylaluminum led to a bis-aluminum complex {(AlMe 2)[AlMe(NCMe)] L (1)} (13). The ability of complexes 1-12 to polymerize ethylene in the presence of an organoaluminum cocatalyst was investigated. Procatalysts 1 and 2 were found to produce negligible activities in the presence of dimethylaluminum chloride (DMAC) and the reactivator ethyltrichloroacetate (ETA), whereas 3 and 4 were found to be completely inactive for polymerization using a variety of different organoaluminum cocatalysts. Using the combination of DMAC and ETA, complexes 5-12 were found to be highly active catalysts; in all cases, the polymer formed was of high molecular weight linear polyethylene.  相似文献   

7.
Reaction of the non-innocent dinucleating ligand 2,5-bis[N,N-bis(carboxymethyl) aminomethyl]hydroquinone (H 6bicah) with VO (2+) and VO 4 (3-) salts in water in the pH range 2 to 4.5 provides a series of novel tetranuclear V (IV) and/or V (V) macrocycles with the main core consisting of the anions [V (V) 4O 4(mu-O) 2(mu-bicah) 2] (4-) isolated at pH = 2.5 and [V (IV) 2V (V) 2O 4(mu-O) 2(mu-bicas)(mu-bicah)] (5-) and [V (IV) 4O 4(mu-O) 2(mu-bicas) 2] (6-) isolated at pH = 4.5 (bicas (*5-) = 2,5-bis[N,N-bis(carboxymethyl) aminomethyl]- p-semiquinonate), whereas at pH = 2 the dinuclear [(V (IV)O) 2(OH 2) 2(mu-bicah)] (2-) was obtained. All vanadium compounds have been characterized, and the charge of the ligand has been assigned in solid state by X-ray crystallography and infrared spectroscopy. The structures of the tetranuclear anions consist of four vanadium atoms arranged at the corners of a rectangle with the two bridging bicas (*5-) and/or bicah (6-) ligands on the long and the two V (IV/V)-O-V (IV/V) bridges on the short sides of the rectangle. UV-vis, (51)V and (1)H NMR spectroscopy and electrochemistry showed that these complexes interconvert to each other by varying the pH. This pH induced redox transformation of the tetranuclear anions has been attributed to the shift of the reduction potential of the bicas (*5-) to higher values by decreasing the pH. The electron is transferred intramolecularly from the metal ion to the electron accepting semiquinones resulting in reduction of bicas (*5-) to bicah (6-) and concurrent oxidation of the V (IV) to V (V). The resulting complexes are further oxidized by atmospheric oxygen. This system as a model for the H (+) coupled redox reactions in metalloenzymes and its relevance is discussed briefly.  相似文献   

8.
A combination of high-resolution electrospray mass spectrometry and (1)H NMR spectroscopy has been used to prove that when a mixture of [(salen)TiO]2 complexes containing two different salen ligands (salen and salen') is formed, an equilibrium is established between the homodimers and the heterodimer [(salen)TiO2Ti(salen')]. Depending upon the structure and stereochemistry of the two salen ligands, the equilibrium may favor either the homodimers or the heterodimer. Extension of this process to mixtures of titanium(salen) complexes [(salen)TiO]2 and vanadium (V)(salen') complexes [(salen')VO] (+)Cl (-) allowed the in situ formation of the heterobimetallic complex [(salen)TiO2V(salen')] (+)X (-) to be confirmed for all combinations of salen ligands studied except when the salen ligand attached to titanium contained highly electron-withdrawing nitro-groups. The rate of equilibration between heterobimetallic complexes is faster than that between two titanium complexes as determined by line broadening in the (1)H NMR spectra. These structural results explain the strong rate-inhibiting effect of vanadium (V)(salen) complexes in asymmetric cyanohydrin synthesis catalyzed by [(salen)TiO]2 complexes. It has also been demonstrated for the first time that the titanium and vanadium complexes can undergo exchange of salen ligands and that this is catalyzed by protic solvents. However, the ligand exchange is relatively slow (occurring on a time scale of days at room temperature) and so does not complicate studies aimed at using heterobimetallic titanium and vanadium salen complexes as asymmetric catalysts. Attempts to obtain a crystal structure of a heterobimetallic salen complex led instead to the isolation of a trinuclear titanium(salen) complex, the formation of which is also consistent with the catalytic results obtained previously.  相似文献   

9.
Cationic metal species normally function as Lewis acids, accepting electron density from bound electron-donating ligands, but they can be induced to function as electron donors relative to dioxygen by careful control of the oxidation state and ligand field. In this study, cationic vanadium(IV) oxohydroxy complexes were induced to function as Lewis bases, as demonstrated by addition of O2 to an undercoordinated metal center. Gas-phase complex ions containing the vanadyl (VO2+), vanadyl hydroxide (VOOH+), or vanadium(V) dioxo (VO2+) cation and nitrile (acetonitrile, propionitrile, butyronitrile, or benzonitrile) ligands were generated by electrospray ionization (ESI) for study by multiple-stage tandem mass spectrometry. The principal species generated by ESI were complexes with the formula [VO(L)n]2+, where L represents the respective nitrile ligands and n=4 and 5. Collision-induced dissociation (CID) of [VO(L)5]2+ eliminated a single nitrile ligand to produce [VO(L)4]2+. Two distinct fragmentation pathways were observed for the subsequent dissociation of [VO(L)4]2+. The first involved the elimination of a second nitrile ligand to generate [VO(L)3]2+, which then added neutral H2O via an association reaction that occurred for all undercoordinated vanadium complexes. The second [UO(L)4]2+ fragmentation pathway led instead to the formation of [VOOH(L)2]+ through collisions with gas-phase H2O and concomitant losses of L and [L+H]+. CID of [VOOH(L)2]+ caused the elimination of a single nitrile ligand to generate [VOOH(L)]+, which rapidly added O2 (in addition to H2O) by a gas-phase association reaction. CID of [VONO3(L)2]+, generated from spray solutions created by mixing VOSO4 and Ba(NO3)2 (and precipitation of BaSO4), caused elimination of NO2 to produce [VO2(L)2]+. CID of [VO2(L)2]+ produced elimination of a single nitrile ligand to form [VO2(L)]+, a V(V) analogue to the O2-reactive V(IV) species [VOOH(L)]+; however, this V(V) complex was unreactive with O2, which indicates the requirement for an unpaired electron in the metal valence shell for O2 addition. In general, the [VO2(L)2]+ species required higher collisions energies to liberate the nitrile ligand, suggesting that they are more strongly bound than the [VOOH(L)2]+ counterparts.  相似文献   

10.
[VO2F(L-L)] (L-L = 2,2'-bipyridyl, 1,10-phenanthroline, Me2N(CH2)2NMe2) and [VO2F(py)2] (py = pyridine) have been prepared from the corresponding [VOF3(L-L)] or [VOF3(py)2] and O(SiMe3)2 in MeCN solution. VO2F (itself made from VOF3 and O(SiMe3)2 in MeCN) forms [Me4N][VO2F2] with [Me4N]F, but does not react with neutral N- or O-donor ligands. VO2Cl, prepared from VOCl3 and ozone, reacts with 2,2'-bipyridyl or 1,10-phenanthroline to form [VO2Cl(L-L)], with pyridine or pyridine-N-oxide (L) to produce [VO2Cl(L)2], and with OPPh3 or OAsPh3 (L') gives [VO2Cl(L')]. A second product from the OPPh3 system is the ionic [VO2(OPPh3)3][VO2Cl2] containing a trigonal bipyramidal cation. Neither VO2F nor VO2Cl form isolable complexes with MeCN, thf or MeO(CH2)2OMe, and both are reduced by P-, As-, S- or Se-donor ligands. [Ph4As][VO2X2] (X = F or Cl) react with 2,2'-bipyridyl to form [VO2X(2,2'-bipyridyl)], but similar reactions with weaker O-donor ligands fail. The complexes have been characterised by IR, multinuclear NMR (1H, 19F, 51V or 31P) and UV-visible spectroscopy. X-ray crystal structures are reported for [VO2F(py)2], [VO2Cl(L)2] (L = py or pyNO) and [VO2(OPPh3)3][VO2Cl2].  相似文献   

11.
Intermediates of chromium-salen catalyzed alkene epoxidations were studied in situ by EPR, (1)H and (2)H NMR, and UV-vis/NIR spectroscopy (where chromium-salens were (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (1) and racemic N,N'-bis(3,4,5,6-tetra-deuterosalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (2)). High-valence chromium complexes, intermediates of epoxidation reactions, were detected and characterized by EPR and NMR. They are the reactive mononuclear oxochromium(V) intermediate (A) Cr(V)O(salen)L (where L = Cl(-) or a solvent molecule) and an inactive chromium-salen binuclear complex (B) which acts as a reservoir of the active species. The latter complex demonstrates an EPR signal characteristic of oxochromium(V)-salen species and (1)H NMR spectra typical for chromium(III)-salen complexes, and it is identified as mixed-valence binuclear L(1)(salen)Cr(III)OCr(V)(salen)L(2) (L(1), L(2) = Cl(-) or solvent molecules). The intermediates Cr(V)O(salen)L and L(1)(salen)Cr(III)OCr(V)(salen)L(2) exist in equilibrium, and their ratio can be affected by addition of donor ligands (DMSO, DMF, H(2)O, pyridine). Addition of donor additives increases the fraction of A over that of B. The same two complexes can be obtained with m-CPBA as oxidant. Reactivities of the Cr(V)O(salen)L complexes toward E-beta-methylstyrene were measured in DMF. The L(1)(salen)Cr(III)OCr(V)(salen)L(2) intermediate has been proposed to be a reservoir of the true reactive chromium(V) species. The chromium-salen catalysts demonstrate low turnover numbers (ca. 5), probably due to ligand degradation processes.  相似文献   

12.
Reactions of organosilicon, -germanium, -tin, -lead, -antimony, and -tin tetrahalide Lewis acids with VO(salen) [H(2)salen = N,N'-bis(salicylidene)ethane-1,2-diamine], related vanadyl salicylaldimines, VO(acacen) [H(2)acacen = N,N'-bis(acetylacetonato)ethane-1,2-diamine], and VO(acac)(2) (acac = acetylacetonato) have been investigated, revealing VO(salen) and VO(acacen) to be significantly stronger vanadyl donors than VO(acac)(2). The vanadyl donor strength of VO(salen) significantly diminishes with the introduction of electron-withdrawing substituents on the salicylaldimine ligand, and the introduction of methyl substituents on the imine carbon atoms can result in a preference for phenolic over vanadyl oxygen donation. Vanadyl donation results in an increase in the vanadyl bond length, while it leaves the distance of vanadium from the basal plane relatively unaffected. Coordination of water trans to a vanadyl oxygen that is involved in a donor bond to tin or lead has little or no effect on the vanadyl bond length but results in a marked movement of vanadium toward the basal plane and a decrease of the V=O-D (D = Sn or Pb) bond angle by as much as 13 degrees, the latter reflecting a loss of multiple bond character of the vanadyl bond. Formation of a vanadyl donor bond results in a decrease in both the vanadyl stretching frequency (infrared spectrum) and energy of the e(pi) <-- b(2) transition (electronic spectrum), the latter being intimately related to the strength of the vanadyl donor bond, while the shift of the b(1) <-- b(2) transition to higher or lower energy is relatively small for vanadyl salicylaldimine and beta-ketimine complexes. Donation through the phenolic oxygen atoms results in an increase in the vanadyl stretching frequency and energy of the e(pi) <-- b(2) transition, which can result in e(pi) <-- b(2)/b(1) <-- b(2) energy crossover.  相似文献   

13.
The synthesis and characterization of carboxylate-bridged dimetallic complexes are described. By using m-terphenyl-derived carboxylate ligands, a series of dicobalt(II), dicobalt(III), dinickel(II), and dizinc(II) complexes were synthesized. The compounds are [Co(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (1), [Co(2)(mu-OH(2))(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (2a-c), [Co(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (3), [Ni(2)(mu-O(2)CAr(Tol))(4)L(2)] (4), [Ni(2)(mu-HO...H)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (5), and [Zn(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (6), where Ar(Tol)CO(2)H = 2,6-di(p-tolyl)benzoic acid and L = pyridine, THF, or N,N-dibenzylethylenediamine. Structural analysis of these complexes revealed that additional bridging ligands can be readily accommodated within the [M(2)(mu-O(2)CAr(Tol))(2)](2+) core, allowing a wide distribution of M...M distances from 2.5745(6) to 4.0169(9) A. Unprecedented bridging units [M(2)(mu-OH(2))(2)(mu-O(2)CR)(2)](n+) and [M(2)(mu-HO...H)(2)(mu-O(2)CR)(2)](n+) were identified in 2a-c and 5, respectively, in which strong hydrogen bonding accommodates shifts of protons from bridging water molecules toward the dangling oxygen atoms of terminal monodentate carboxylate groups. Such a proton shift along the O...H...O coordinate attenuates the donor ability of the anionic carboxylate ligand, which can translate into increased Lewis acidity at the metal centers. Such double activation of bridging water molecules by a Lewis acidic metal center and a metal-bound general base may facilitate the reactivity of metallohydrolases such as methionine aminopeptidase (MAP).  相似文献   

14.
The tridentate dithiocarbazate-based Schiff base ligands H(2)L (S-methyl-3-((5-R-2-hydroxyphenyl)methyl)dithiocarbazate, R = NO(2), L = L(2); R = Br, L = L(3)) react with [VO(acac)(2)] in the presence of imidazole derivatives as coligands to form oxovanadium(IV) and cis-dioxovanadium(V) complexes. With benzimidazole and N-methylimidazole, the products are oxovanadium(IV) complexes, viz. [VOL(3)(BzIm)].0.5CH(3)CN (1a) and [VOL(N-MeIm)(2)] (L = L(3), 1b; L = L(2), 1c), respectively. In both 1a,b, the O and S donor atoms of the tridentate ligand are cis to the terminal oxo group (in the "equatorial" plane) and mutually trans, but the N donor atom is respectively cis and trans to the oxo atom, as revealed from X-ray crystallography. When imidazole or 4-methylimidazole is used as the ancillary ligand, the products obtained are water-soluble cis-dioxovanadium(V) complexes [VO(2)L(R'-ImH)] (L = L(3) and L(2), R' = H and Me, 2a-d). These compounds have zigzag chain structures in the solid state as confirmed by X-ray crystallographic investigations of 2a,d, involving an alternating array of LVO(2)(-) species and the imidazolium counterions held together by Coulombic interactions and strong hydrogen bonding. Complexes 2a-d are stable in water or methanol. In aprotic solvents, viz. CH(3)CN, DMF, or DMSO, however, they undergo photochemical transformation when exposed to visible light. The putative product is a mixed-oxidation divanadium(IV/V) species obtained by photoinduced reduction as established by EPR, electronic spectroscopy, and dynamic (1)H NMR experiments.  相似文献   

15.
Two mononuclear Mn compounds of Mn III (salen)(L 1) and Mn III (salen)(L 2) (H 2 salen=N,N-ethylenebis-(salicylideneaminato),L 1=4-(2-hydroxybenzylideneamino)benzoic acid and L 2=4-(2-hydroxybenzylideneamino)-2-hydroxybenzoic acid) have been prepared and characterized by X-ray crystallography.Both compounds crystallize in the monoclinic system,space group P2 1 /c with a=14.351(4),b=14.955(3),c=11.869(3) and β=91.529(3)° for 1;and those for 2:a=14.439(9),b=15.217(9),c=11.660(7) and β=91.648(1)°.The compounds have similar structures,in which the Mn III center adopts a distorted square-pyramidal geometry with the basal plane constructed by two N and two O atoms from the salen ligand and the apical position occupied by the carboxylate O atom from L 1 or L 2 ligand.The voltammetric behavior of the compounds is examined,which shows quasi-reversible one-electron reduction of Mn(Ⅲ) to Mn(Ⅱ).The reduction potentials of both compounds fall between-0.33 V [E 0 (O 2 /O 2 ·)] and 0.65 V [E 0 (1 O 2 /O 2 ·)],which suggest that 1 and 2 could be potential mimics of Mn-SOD.  相似文献   

16.
Complex formation between tetraoxovanadate(V) and each of the nucleosides adenosine, guanosine, cytidine and uridine has been studied in a constant salt medium at pH 7. 13C- and 51V NMR studies show that only complexes with the formula V2L2 (V = vanadate, L = nucleoside) are formed, and their formation constants have been determined. They have 51V NMR resonances around -523 ppm relative to VOCl3 and they exhibit no CD in the spectral region of the charge-transfer transitions. MCD spectra were also measured, and all experiments are in accord with a molecular structure composed by two edge-sharing VO6 octahedra forming an O4V(mu-O)2VO4 skeleton with each of the nucleoside ligands bridging the two vanadium centres through the ribose 2',3'-oxygens, which are the oxygens outside the V2O6 plane. Admixture of imidazole-HCl buffer at pH 7 gives rise to additional complexes of 1:1 stoichiometry. They have been characterized by 51V NMR and CD, and their formation constants are reported. Vanadate(V) and the deoxynucleosides deoxyadenosine, deoxyguanosine, deoxycytidine and thymidine form very weak complexes which cannot be detected by 51V NMR or CD under conditions for which vanadate and the nucleosides form complexes.  相似文献   

17.
Vanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L. In the solid state, compound 1 has two conformational isomers 1a and 1b; both have been characterized by X-ray crystallography. Compound 1a has the syn conformation that enforces the donor atoms around the metal center to adopt a distorted tbp structure (tau = 0.55). Isomer 1b on the other hand has an anti conformation with almost a regular square pyramidal geometry (tau = 0.06) around vanadium. In solution, however, 1 prefers to be in the square pyramidal form. A second variety of vanadyl complex [VO(L(cyclic))(2)](I(3))(2) (2) with a new bidentate O,N donor ligand involving isothiazolium moiety has been obtained by a ligand-based oxidation of the precursor complex 1 with iodine. Preliminary X-ray and FAB mass spectroscopic data of 2 have supported the formation of a heterocyclic moiety by a ring closure reaction involving a N-S bond. Vanadium(III) complex [V(acac)(HL)(2)] (3) has been obtained through partial ligand displacement of [V(acac)(3)] with H(2)L. Compound 3 has almost a regular octahedral structure completed by two bidentate HL ligands along with an acetylacetonate molecule. Electronic spectra, magnetism, EPR, and redox properties of these compounds are reported.  相似文献   

18.
A novel class of dinucleating ligands has been introduced into manganese chemistry to study the reactivity of this metal towards dioxygen under strictly controlled conditions. Such N4 ligands combine some of the major peculiarities of tetradentate Schiff bases and the porphyrin skeleton. They are derived from the condensation between 2-pyrrolaldehyde and ethylenediamine or o-phenylenediamine, leading to pyrenH2 (LH2, 1), pyrophenH2 (L'H2, 2) and Me2pyrophenH2, (L"H2, 3), respectively. Their metallation with [Mn3-(Mes)6] (Mes = 2,4,6-trimethylphenyl) led to [Mn2L2] (4), [MnL'(thf)2] (5) and [MnL"(thf)2] (6). Complex 4 displays a double-stranded helical structure, while 5 and 6 are mononuclear complexes containing hexacoordinated metals. Regardless of their structure, complexes 5 and 6 behave in a similar manner to 4 in their reaction with dioxygen, namely, as a dimetallic unit inside a cavity defined by two dinucleating ligands. These reactions led to dinuclear MnIII/MnIV oxo-hydroxo derivatives, [Mn2L2(mu-O)(mu-OH)] (7), [Mn2L'2(mu-O)(mu-OH)] (8) and [Mn2L"2(mu-O)(mu-OH)] (9), in which the two Mn ions are strongly antiferromagnetically coupled [J = -53 (7), J = -64 (8), J = -60 cm(-1) (9)]. The crystal structure of 7 could only be solved with synchrotron radiation as the crystals diffracted very poorly and suffered from twisting and disorder. The formation of 7-9 has been proposed to occur through the formation of an intermediate dinuclear hydroperoxo species.  相似文献   

19.
<正>The new oxovanadium (V) complex, [PyH][VO2(L)] 1 (salicyladehyde 5-bromo salicyloylhydrazone is abbreviated as H2L; Hpy is protonated pyridine) was obtained from a refluxed solution of VOSO4 and H2L in acetonitrile-methanol-pyridine. Similarly, another new complex, [VO(L)(OCH3)] 2 was synthesized by refluxing VOSO4 and H2L in methanol-pyridine. Crystal data for 1: C19H15N3O5BrV, Mr= 496.2, monoclinic, P21/n, a = 7.1885(3), b = 9.2718(3), c = 28.803(1) A, β = 96.185(1)°, Z = 4 and V = 1908.6(1) A3; for 2: C15H12N2O5BrV, Mr= 431.1, monoclinic, P2,/n, a = 12.202(2), b = 8.045(2), c = 16.604(3) A, β = 101.29(3)°, Z = 4 and V = 1598.4(2) A3. The structures of 1 and 2 have been determined by X-ray analyses and reveal that the coordination environments of V atoms in both complexes are of square-based pyramid. Three of the four based donor atoms are from the tridentate "ONO" donor ligand while the fourth is one terminal oxygen atom with the V(1) - O(3) distance 1.646(4) A for 1 and one -OCH3 group with the V  相似文献   

20.
A number of 4-substituted, dipicolinatodioxovanadium(V) complexes and their hydroxylamido derivatives were synthesized to characterize the solid state and solution properties of five- and seven-coordinate vanadium(V) complexes. The X-ray crystal structures of Na[VO2dipic-NH2].2H2O (2) and K[VO2dipic-NO2] (3) show the vanadium adopting a distorted, trigonal-bipyramidal coordination environment similar to the parent coordination complex, [VO2dipic]- (1), reported previously as the Cs+ salt. The observed differences in the chemical shifts of the complexes both in the 1H (ca. 0.7-1.4 ppm) and 51V (ca. 1-11 ppm) NMR spectra were consistent with the electron-donating or electron-withdrawing properties of the substituent groups, respectively. Stoichiometric addition of a series of hydroxylamine ligands (H2NOH, MeHNOH, Me2NOH, and Et2NOH) to complexes 1-3 led to the formation of seven-coordinate vanadium(V) complexes. The X-ray crystal structure of [VO(dipic)(Me2NO)(H2O)].0.5H2O (1c) was found to be similar to the previously characterized complexes [VO(dipic)(H2NO)(H2O)] (1a) and [VO(dipic)(OO-tBu)(H2O)]. While only slight differences in the 1H NMR spectra were observed upon addition of the hydroxylamido ligand, the signals in the 51V NMR spectra change by up to 100 ppm. The addition of the hydroxylamido ligand increased the complex stability of complexes 2 and 3. Evidence for a nonstoichiometric redox reaction was found for the monoalkyl hydroxylamine ligand. The reaction of an unsaturated five-coordinate species with a hydroxylamine to form a seven-coordinate vanadium complex will, in general, dramatically increase the amounts of the vanadium compound that remain intact at pH values near neutral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号