首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1 : 1 reactions of [ClP(mu-NtBu)]2 with the difunctional aromatic amines 1,2-1-YH-2-NH2-C6H4 in the presence of Et3N give the dimeric phosph(III)azane macrocycles [{P(mu-NtBu)2(1-Y-2-HN-C6H4)]2, predominantly as the cis isomer in the case of Y=O (1.cis) and as the trans isomer for Y=S (2.trans). Model M.O. calculations suggest that the selection of the cis and trans isomers is not thermodynamically controlled. The alternative isomers 1.trans and 2.cis are generated exclusively by the deprotonation of the model intermediates [(1-Y-2-NH2-C6H4)P(mu-NtBu)]2[Y=O (3), S (4)] with nBuLi followed by cyclisation with [ClP(mu-NtBu)]2. The solid-state structures of 1.cis/trans(50 : 50), 2.cis, 3 and 4 are reported.  相似文献   

2.
The structures of the host-guest complexes [[[[P(mu-NtBu)]2(mu-NH)]5]I]-.[Li(thf)4]+ [2.I[Li(thf)4]] and [[[P(mu-NtBu)]2(mu-NH)]5].HBr.THF (2.HBr.THF) show that increased distortion of the framework of the pentameric macrocycle [[[P(mu-NtBu)]2(mu-NH)]5] (2) occurs with the larger halide ions. Theoretical studies show that the thermodynamic stabilities of the model host-guest anions [2.X]- (X=Cl, Br, I) are in the order Cl- approximately Br->I-, that is, the reverse of the templating trend observed experimentally. These studies support the view that the selection of the pentamer 2 over the tetramer [[[P(mu-NtBu)]2(mu-NH)]4] (1) is kinetically controlled, a conclusion which is also consistent with the previous observation that the frameworks of 1 and 2 are not in dynamic equilibrium with each other.  相似文献   

3.
The hydrolysis of [ClP(mu-NtBu)]2 with H2O-Et3N in thf, followed by in situ lithiation with nBuLi gives the Li13 cage [[[O-P(mu-NtBu)]2Li2]3(LiCl)6Li(Cl/OnBu)0.5(thf)7], containing a [O-P(mu-NtBu)]2(2-) dianion that is isoelectronic with ligands of the type [(RN)P(mu-NR)]2(2-).  相似文献   

4.
The dimeric macrocycles [[P(mu-NtBu)]2.LL]2 [LL = OCH2C(Me)2CH2O (1), 2,6-(NH)2C5H3N (2), 1,2-(NH)2C6H4(3)] have been obtained by the reactions of the appropriate diols and diamines (LLH2) with the dimeric phosph(III)azane [ClP(mu-NtBu)]2. Under different conditions the reaction of 1,2-(NH2)2C6H4 with [ClP(mu-NtBu)]2 gives the monomer [[P(mu-NtBu)]2.[1,2-(NH)2C6H4]] (4) (instead of the dimer 3). Contrary to the literature, the results illustrate that the formation of dimeric macrocycles is common in these reactions and dependent among other factors on the steric demands and length of the organic spacer (LL) as well as the reaction conditions.  相似文献   

5.
Eisler DJ  Chivers T 《Inorganic chemistry》2006,45(26):10734-10742
The dichlorocyclodistib(III)azane [ClSb(mu-NtBu)]2 (1) has been shown to exist as the cis isomer in the solid state. A series of bis(1 degree-amino)cyclodistib(III)azanes [R'NHSb(mu-NtBu)]2 (2, R' = tBu; 3, R' = Dipp; 4, R' = Dmp) has been prepared by the reaction of 1 with 2 equiv. of LiNHR'. On the basis of NMR solution spectra, all three derivatives are formed as a mixture of cis and trans isomers. In the case of 3, the structures of both the cis and trans isomers have been determined by X-ray crystallography; cis-3 adopts an endo, endo arrangement for the amido protons of the DippNH groups. Isomerization of trans-3 into cis-3 occurs slowly in solution. Deprotonation of 2 with 2 equiv. of nBuNa or trans-3 with nBuLi produces [Na2Sb2(mu-NtBu)4] (5) and [Li2Sb2(mu-NtBu)2(mu-NDipp)2] (6), whose solvated cubane structures were established by X-ray crystallography. In contrast, the reaction of cis-3 with 2 equiv. of nBuLi produces the tricyclic compound [Li2Sb(mu-NtBu)2(mu-NDipp)(mu-NHDipp)] (7).  相似文献   

6.
The tetrameric macrocycle [(P(mu-NtBu))2(1,4-(NH)2C6H4)]4, obtained from the reaction of the phosphazane dimer [ClP(mu-NtBu)]2 with p-phenylenediamine, has an unusual folded conformation in the solid state and contains a roughly tetrahedral arrangement of endo N-H groups for the potential coordination of anions.  相似文献   

7.
The reaction of [ClP(mu-NtBu)]2 with 1,5-diamino-naphthalene [1,5-(NH2)2C10H6] in Et3N-thf gives the trimeric macrocycle [{P(mu-NtBu)}2{1,5-(NH)2C10H6}]3(1); the X-ray structure of the toluene solvate 1.3toluene reveals a cone-shaped (calixarene-like) arrangement in which toluene guest molecules are trapped within the cavity.  相似文献   

8.
The unique structure of [(tBuN)(2)PK]( infinity ) (2) (containing [(tBuN)(2)P](-) monoanions) is in stark contrast to the previously reported Li(+) analogue [[[tBuNP(mu-NtBu)](2)](2)]Li(4) (1) (containing the dimeric [[tBuNP(mu-NtBu)](2)](2-) ion). DFT and (31)P NMR spectroscopic studies reveal that the formation of the monoanion arrangements are most thermodyamically favored for Li, Na, and K, 1 being the product of kinetic control and 2 being the product of thermodynamic control.  相似文献   

9.
The protolysis of mononuclear ferric amide precursors FeCl[N(SiMe3)2]2(THF) (1) or [FeCl2{N(SiMe3)2}2]- (2) by primary amines provides, under suitable conditions, an effective route to dinuclear weak-field ferric-imide clusters with [Fe2(mu-NR)2]2+ cores. In the synthesis of known arylimide clusters [Fe2(mu-NAr)2Cl4]2- (Ar = Ph, p-Tol, Mes) from 2, the counterion has a major effect on selectivity and yield, and the use of quaternary ammonium salts affords a substantial improvement over earlier, Li+-based chemistry. The new tert-butylimide core is obtained by protolysis of 1 with excess tBuNH2 to give crystalline cis-Fe2(mu-NtBu)2Cl2(NH2tBu)2 (9). Complex 9 can be transformed to other dinuclear species through substitution of the terminal amines by pyridines, PEt3, or chloride, or through protolysis of bridging alkylimides by arylamines, allowing isolation of trans-Fe2(mu-NtBu)2Cl2(DMAP)2 (DMAP = 4-dimethylaminopyridine), cis-Fe2(mu-NtBu)2Cl2(PEt3)2, [Fe2(mu-NtBu)2Cl4]-, and trans-Fe2(mu-NPh)2Cl2(NH2tBu)2. The susceptibility of alkyl substituents to beta-elimination appears to limit the general applicability of protolytic cluster assembly using alkylamines. The dinuclear clusters have been characterized by X-ray, spectroscopic, and electrochemical analyses.  相似文献   

10.
The reaction of [ClP(muNtBu)2PNtBuH] (1) with LiBsBu3H yields trans-[HP(muNtBu)2PNtBuH] (2), by contrast, reaction with LiBEt3H yields cis-[HP(mu-NtBu)2PNtBuH] (3). Compounds and represent the first examples of P-H-functionalised cyclophosph(III)azanes. Deprotonation of with BnNa (Bn=benzyl) gives the first example of a secondary phosphine-functionalised cyclodiphosph(III)azane anion [HP(mu-NtBu)2PNtBu]- (4).  相似文献   

11.
The reaction of [ClP(mu-NtBu)]2 (1) with H2O (1 : 2 equivalents) in the presence of excess Et3N gives the new chain compound [(mu-O)[P(mu-NtBu)2P(H)=O]2] (3), consisting of two P2N2 rings linked by a mu-O atom and terminating in P(V)(H)=O groups. A similar chain species is obtained from the reaction of the lithiate of [(tBuNH)P(mu-NtBu)2P(H)=O] (5) with [ClP(mu-NtBu)2P(NHtBu)] (2), the product being [(mu-O)[P(mu-NtBu)2P(NHtBu)]2] (6). Compounds 3 and 6 are the first examples of O-bridged chain phosphazanes and potential precursors to new phosphorus-nitrogen macrocycles. The syntheses and X-ray structures of 3, 5 and 6 are reported.  相似文献   

12.
Deprotonation of bis(tert-butylamido)cyclophosph(III/III)azane with organolithium or organomagnesium reagents followed by oxidation with elemental tellurium is a viable approach to the preparation of metal cyclodiphosphazane mono- and ditellurides. The reaction of the cyclodiphosph(III)azane [tBu(H)NP(mu-NtBu)2PN(H)tBu] (1) with elemental tellurium in boiling toluene affords the monotelluride [tBu(H)N(Te)P(mu-NtBu)2PN(H)tBu] (9). A similar reaction involving the magnesium salt Mg[tBuNP(mu-NtBu)2PNtBu](THF)2 (2) also yields a monotelluride Mg[tBuN(Te)P(mu-NtBu)2PNtBu]-(THF)2 (10). By contrast, reaction of the lithium salt Li2[tBuNP(mu-NtBu)2PNtBu](THF)2 (3) with tellurium results in double oxidation and the formation of the ditellurides Li2[tBuN(Te)P(mu-NtBu)2P(Te)NtBu](THF)4 (11) and Li2-[tBuN(Te)P(mu-NtBu)2P(Te)NtBu](tmeda)2 (12). Compounds 9-12 have been characterized by multinuclear (1H, 7Li, 13C, 31P, and 125Te) NMR, while 9, 10, and 12 have also been characterized by X-ray crystallography. The structure of 9 reveals a typical cis/endo, exo arrangement, with no intermolecular contacts to tellurium. The seco-heterocubic structure, observed in 2, is retained in 10, with the ligand chelating magnesium in an N,N',N"-manner. Unique coordination behavior is exhibited by the ditelluride 12, in which the dianionic ligand is attached to the two lithium centers in both Te,Te' and Te,N bonding modes. Multinuclear NMR data are consistent with retention of the solid-state structures of 9-12 in solution at low temperatures. The reactivity of cyclodiphosph(III/III)azanes toward chalcogens is rationalized by using theoretical calculations (semiempirical PM3 level of theory), which show an inverse correlation between the charge at the phosphorus center and the ease of oxidation.  相似文献   

13.
Na[BH(pz)(3)] and Na[AuCl(4)].2H(2)O react in water (1:1) to give [Au[kappa(2)-N,N'-BH(pz)(3)]Cl(2)] (1) or, in the presence of NaClO(4) (2:1:1), the cationic complex [Au[kappa(2)-N,N'-BH(pz)(3)](2)]ClO(4) (2). The reactions of Na[B(pz)(4)] with the cyclometalated gold complexes [AuRCl(2)] and NaClO(4) (1:1:1) produce [Au[kappa(2)-N,N'-B(pz)(4)](R)]ClO(4) [R = kappa(2)-C,N-C(6)H(4)CH(2)NMe(2)-2 (3)] or [Au[kappa(2)-N,N'-B(pz)(4)](R)Cl] [R = C(6)H(3)(N=NC(6)H(4)Me-4')-2-Me-5 (4)], respectively, although 4 is better obtained in the absence of NaClO(4). The crystal structures of 1 and 3.CHCl(3) are reported. Both complexes display the gold center in square planar environments, two coordination sites being occupied by the chelating poly(pyrazolyl)borate ligands.  相似文献   

14.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

15.
The protonation of [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNO)] (1) with HBF(4) occurs at the oxygen of the noncoordinating side of the trans-hyponitrite ligand to give [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOH)][BF(4)] (2) in good yield. The monoprotonated hyponitrite in 2 is deprotonated easily by strong bases to regenerate 1. Furthermore, 1 reacts with the methylating reagent [Me(3)O][BF(4)] to afford [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOMe)][BF(4)] (3). The molecular structures of 2 and 3 have been determined crystallographically, and the structure of 2 is discussed with the results of the DFT/B3LYP calculations on the model complex [Ru(2)(CO)(4)(mu-H)(mu-PH(2))(mu-H(2)PCH(2)PH(2))(mu-eta(2)-ONNOH)](+) (2a). Moreover, the thermolysis of 2 in ethanol affords [Ru(2)(CO)(4)(mu-H)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)][BF(4)] (4) in high yield, and the deprotonation of 4 by DBU in THF yields the novel complex [Ru(2)(CO)(4)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)] (5).  相似文献   

16.
The in situ reaction of the phosphazane dimer [CIP(mu-N-2-NC5H4)]2 (2) with CuCl in the presence of CsH5N/H2O gives the title complex [(P(mu-N-2-NC5H4))2(mu-O)]2(CuCl x (C5H5N)2)4 (1), containing a tricyclic [(P(mu-N-2-NC5H4))2(mu-O)]2 ligand which is isoelectronic with species of the type [(P(mu-NR))2NR]2.  相似文献   

17.
We compared the spectral (IR and Raman), electrochemical, and photoelectrochemical properties of nanocrystalline TiO(2) sensitized with the newly synthesized complex [NBu(4)](2)[cis-Ru(Hdcpq)(2)(NCS)(2)] (1; [NBu(4)](+) = tetrabutylammonium cation; H(2)dcpq = 4-carboxy-2-[2'-(4'-carboxypyridyl)]quinoline) with those of TiO(2) sensitized with [NBu(4)](2)[cis-Ru(Hdcbpy)(2)(NCS)(2)] (2; H(2)dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) and [NBu(4)](2)[cis-Ru(Hdcbiq)(2)(NCS)(2)] (3; H(2)dcbiq = 4,4'-dicarboxy-2,2'-biquinoline). Complex 1 achieved efficient sensitization of nanocrystalline TiO(2) films over a wide visible and near-IR region, generating a large short-circuit photocurrent. The absorbed photon-to-current conversion efficiency decreased in the order 2 > 1 > 3 with the decrease in the free energy change (-Delta G(inj)) of the electron injection from the ruthenium complex to TiO(2). The open-circuit photovoltages (V(oc)'s) of dye-sensitized solar cells decreased in the order 2 > 1 > 3 with the increase in the dark current resulting from reverse electron transfer from TiO(2) to I(3)(-). The sensitizer-dependent V(oc) value can be interpreted as a result of reverse electron transfer through the sensitizing dye molecules.  相似文献   

18.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(11):2602-2607
The new compounds K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) have been synthesized by the reactions of A(2)Q(3) (A = K, Rb, Cs; Q = S, Se) with Ti, M (M = Cu or Ag), and Q at 823 K. The compounds Rb(2)TiCu(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) are isostructural. They crystallize with two formula units in space group P4(2)/mcm of the tetragonal system in cells of dimensions a = 5.6046(4) A, c = 13.154(1) A for Rb(2)TiCu(2)S(4), a =6.024(1) A, c = 13.566(4) A for Cs(2)TiAg(2)S(4), and a =5.852(2) A, c =14.234(5) A for Cs(2)TiCu(2)Se(4) at 153 K. Their structure is closely related to that of Cs(2)ZrAg(2)Te(4) and comprises [TiM(2)Q(4)(2)(-)] layers, which are separated by alkali metal atoms. The [TiM(2)Q(4)(2)(-)] layer is anti-fluorite-like with both Ti and M atoms tetrahedrally coordinated to Q atoms. Tetrahedral coordination of Ti(4+) is rare in the solid state. On the basis of unit cell and space group determinations, the compounds K(2)TiCu(2)S(4) and Rb(2)TiAg(2)S(4) are isostructural with the above compounds. The band gaps of K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), and Cs(2)TiAg(2)S(4) are 2.04, 2.19, 2.33, and 2.44 eV, respectively, as derived from optical measurements. From band-structure calculations, the optical absorption for an A(2)TiM(2)Q(4) compound is assigned to a transition from an M d and Q p valence band (HOMO) to a Ti 3d conduction band.  相似文献   

19.
The synthesis of Ce(IV) complexes [Ce(sac)(2)(SO(4))(H(2)O)(4)] (1) and [Ce(sac)(2) (SO(4))(PyOH)(2)] (2) (sac=saccharinate, PyOH=2-hydroxypyridine) starting with sodium saccharinate is described. Their vibrational and nuclear magnetic resonance ((1)H, (13)C) spectra as well as their thermal mode of degradation were investigated. The data indicate that sac in complex 1 behaves as a monodentate ligand through the nitrogen atoms. Saccharinato ligand in complex 2 shows different mode of coordination, where it behaves as tridentate and binds Ce(IV) through its carbonylic oxygen, nitrogen and sulphonylic oxygen atoms. The most probable structure in complex 2 is that, units of [Ce(sac)(2)(SO(4))(PyOH)(2)] are linked by bridges of the O- of sac sulphonyl leading to polymeric chains.  相似文献   

20.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号