首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The atomic and electron structures of toroidal carbon molecules (C240 and two C120 isomers) and related endohedral complexes with lithium (Li2@Cn and Li4@Cn) were theoretically studied using both nonempirical (3–21G basis set) and semiempirical (MNDO) calculation schemes. For the metal-containing compounds, the behavior of lithium atoms embedded into internal cavities of the carbon framework was studied using methods of molecular dynamics. It is demonstrated that the structure of electron levels of metal-containing carbon complexes exhibits an embedded state in the forbidden band, which appears due to the presence of electrons accepted from metal atoms. The position of this embedded state and the bandgap width depend both on the initial carbon structure and on the amount of metal atoms incorporated.  相似文献   

5.
6.
7.
《Physics letters. A》2005,342(3):237-246
The topological defects (pentagons and heptagons) in a hexagonal graphitic network give rise to a non-zero curvature in the three-dimensional structure formed by the network. The curvature is quantized due to the hexagonal symmetry of graphite. We clarify how the topological defects affect the graphitic carbon morphology, invoking the knowledge of differential geometry.  相似文献   

8.
9.
单壁碳纳米管环离散谱和连续谱间的转变   总被引:2,自引:0,他引:2       下载免费PDF全文
刘超平  丁建文  颜晓红 《物理学报》2004,53(10):3472-3476
考虑卷曲效应,构造了扶手形单壁碳纳米管环的单Π轨道紧束缚模型.利用波函数分解方法导出了原子间相互作用矩阵元,由此研究了扶手形碳纳米管环的电子性质.随环半径改变,观察到电子结构发生从离散谱到连续谱之间的转变.计算也表明随管半径改变,其能谱也有类似的变化. 关键词: 碳纳米管环 卷曲效应 电子结构  相似文献   

10.
Few-layer graphitic carbon nitride(g-C_3N_4) nanosheets were fabricated and utilized as a saturable absorber for mode-locking in an Er-doped fiber laser with net normal dispersion. The g-C_3N_4/polyvinyl alcohol(PVA) hybrid-film-based saturable absorber has a modulation depth of 4.01% and a saturation intensity of 7.5 MW/cm~2. By integrating g-C_3N_4-PVA mode-locker into the laser cavity, a mode-locked operation could be obtained. The achieved mode-locking pulse centered at 1530.3 nm has a pulse width of 530 ps. Its repetition rate is 40.8 MHz, and the corresponding signal-to-noise ratio is about 55 dB.  相似文献   

11.
The electronic properties of an experimentally realized graphitic carbon nitride (g-C3N3) layer has been studied via first-principles calculations. Unlike the recently reported ferromagnetic g-C4N3 structure, the g-C3N3 system is nonmagnetic. Based on the two-dimensional g-C3N3 structure, we predicts a new graphitic hydrogenated carbon nitride (g-H3C3N3) for the first time, which shows 100% half-metallic property around Fermi energy. It would be a kind of important material in spintronics if it could be synthesized experimentally in the future.  相似文献   

12.
《Surface science》1989,219(3):L565-L570
Photoemission experiments show that graphitic overlayers obtained by cracking ethylene on Ni(110) have a significantly different structure from graphite carbon on Ni(111) or Ni(100). Analyses of our data suggest that a complete overlayer of graphite in register with the substrate cannot be formed because of the rough structure of the Ni(110) face. Nevertheless a graphitic-like structure with much of the pz orbitals saturated can grow along the channels of the (110) surface. These findings are consistent with a previous model deduced by surface extended energy loss experiments performed on the same system.  相似文献   

13.
Graphitic carbon nitride (g-C3N4) has been synthesized via a two-step pyrolysis of melamine (C3H6N6) at 800°C for 2 h under vacuum conditions. X-ray diffraction (XRD) patterns strongly indicate that the synthesized sample is g-C3N4. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) morphologies indicate that the product is mainly composed of graphitic carbon nitride. The stoichiometric ratio of C:N is determined to be 0.72 by elemental analysis (EA). Chemical bonding of the sample has been investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Electron energy loss spectroscopy (EELS) verifies the bonding state between carbon and nitrogen atoms. Optical properties of the g-C3N4 were investigated by PL (photoluminescence) measurements and UV–Vis (ultraviolet–visible) absorption spectra. We suppose its luminescent properties may have potential application as component of optical nanoscale devices. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed.  相似文献   

14.
15.
In order to understand self-organization in helicity-driven systems, we have investigated the dynamics of low-aspect-ratio toroidal plasmas by decreasing the external toroidal field and reversing its sign in time. Consequently, we have discovered that the helicity-driven toroidal plasma relaxes towards the flipped state. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. The self-reversal of the magnetic fields is attributed to the nonlinear growth of the n=1 kink instability of the central open flux.  相似文献   

16.
Ball-milled graphitic carbon, both not and electrochemically lithiated, has been studied by total x-ray diffraction involving high-energy synchrotron radiation scattering and atomic pair distribution function analysis. The experimental data has been used to guide reverse Monte Carlo simulations of the three-dimensional structure of the not-lithiated samples. Experimental and modeling results show that ball milling for short times breaks the graphitic layers into smaller pieces as well as generates extended atomic vacancies. Those increase the overall ability of the material to accommodate lithium. Ball milling for longer times keeps generating even more atomic vacancies in the graphitic layers. Carbon atoms displaced from the layers, however, move in between the layers, turning heavily ball-milled graphitic carbon into an assembly of almost-fused-together, heavily buckled layers that have an impaired ability to accommodate Li atoms. This helps explain well the initial substantial increase and then decrease in the Li storage capacity of ball-milled graphitic carbon. The study demonstrates the great ability of total x-ray diffraction to provide precise structural information for complex materials that are being increasingly explored for energy applications.  相似文献   

17.
18.
Layers of oriented carbon nanotubes and nanometer-size plate-shaped graphite crystallites are obtained by chemical vapor deposition in a glow-discharge plasma. A structural-morphological investigation of a carbon material consisting of nanotubes and nanocrystallites is performed, and the field-emission properties of the material are also investigated. It is shown that electron field emission is observed in an electric field with average intensity equal to or greater than 1.5 V/μm. The low fields giving rise to electron emission can be explained by a decrease in the electronic work function as a result of the curvature of the atomic layers of graphitic carbon. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 5, 381–386 (10 March 1999)  相似文献   

19.
《Current Applied Physics》2018,18(9):1006-1012
Coupling of graphitic carbon nitride (GCN) with electrospun carbon nanofibers (CNFs) enhanced the photoelectrochemical (PEC) performance of a pristine GCN photoanode. Polyacrylonitrile (PAN) was electrospun to form fibers that were then carbonized to form one-dimensional (1D) CNFs, which were then used to fabricate the GCN structure. The optimum GCN/CNFs hybrid structure was obtained by controlling the amount of GCN precursors (urea/thiourea). The surface morphology of the hybrid structure revealed the coating of GCN on the CNFs. Additionally, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction confirmed the phases of the GCN/CNFs hybrids. PEC results showed a higher photocurrent of 3 μA for the hybrid compared with that of 1 μA for the pristine GCN. The high photocurrent for the hybrid structures indicated the formation of heterojunctions that resulted from a lower recombination rate of charge carriers. Moreover, UTh0.075 (0.075 g of urea and 0.075 g of thiourea) hybrid sample showed the highest performance of hydrogen generation with its numerical value of 437 μmol/g, compared to those of UTh0.1(0.1 g of urea and 0.1 g of thiourea) and UTh0.05 (0.05 g of urea and 0.05 g of thiourea) composite samples. This higher hydrogen production could be explained again with successful formation of heterojunctions between GCN and CNFs. Overall, we report a new approach for obtaining 1D hybrid structures, having better PEC performance than that of pristine GCN. These hybrids could potentially be used in energy-related devices.  相似文献   

20.
The fabrication of well-ordered nanoporous graphitic carbon nitride by condensation of cyanamide (CN-NH2) as a molecular precursor using a colloidal silica crystalline array as a template is described. The resulting sample exhibited a three-dimensionally extended highly ordered pore array as shown by transmission electron microscopy, scanning electron microscopy and nitrogen isotherms. The carbon nitride structure revealed high graphitic nature with C3N4 stoichiometry. In particular, the C3N4 network structure consists of tri-s-triazine rings (C6N7) cross-linked by trigonal N atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号