首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coupled activation of two enzymes: glucose dehydrogenase (GDH) and horseradish peroxidase (HRP), is used to construct the parallel-operating AND and InhibAND logic gates. The added substrates for the respective enzymes, glucose and H(2)O(2), act as the gate inputs, while the biocatalytically generated NADH and gluconic acid provide the output signals that follow the operations of the gates. The two gates are generated in the same vial, thus allowing the logic operations to take place in parallel, and the simultaneous readout of the functions of the gates.  相似文献   

2.
A simple, versatile, and label‐free DNA computing strategy was designed by using toehold‐mediated strand displacement and stem‐loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two‐layer logic cascade were constructed. The probes contain a G‐quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light‐up fluorescent signal of G‐quadruplex/NMM complex was used as the output readout. The inputs are the disease‐specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label‐free and modular strategy might be adapted in multi‐target diagnosis through DNA hybridization and aptamer‐target interaction.  相似文献   

3.
A DNA-encoding strategy is reported for the programmable regulation of the fluorescence properties of silver nanoclusters (AgNCs). By taking advantage of the DNA-encoding strategy, aqueous AgNCs were used as signal transducers to convert DNA inputs into fluorescence outputs for the construction of various DNA-based logic gates (AND, OR, INHIBIT, XOR, NOR, XNOR, NAND, and a sequential logic gate). Moreover, a biomolecular keypad that was capable of constructing crossword puzzles was also fabricated. These AgNC-based logic systems showed several advantages, including a simple transducer-introduction strategy, universal design, and biocompatible operation. In addition, this proof of concept opens the door to a new generation of signal transducer materials and provides a general route to versatile biomolecular logic devices for practical applications.  相似文献   

4.
A l-phenyl alanine derivative (L) could be used as a fluorescence and absorption dual-modal sensor, which was highly sensitive and selective to copper ion at physiological pH. We have drawn attention to the use of its copper complex to acquire a half-subtractor with parallel operating INHIBIT and XOR logic gates, by monitoring, fluorescence and absorbance as output signals, respectively.  相似文献   

5.
Fluorescence‐switch‐based logic devices are very sensitive compared with most of the reported devices based on UV/Vis absorption systems. Herein, we demonstrate that a simple molecule, 5,10,15,20‐tetra‐(4‐aminophenyl)porphyrin (TAPP), shows protonation‐induced multiple emission switches through intramolecular charge transfer and/or aggregation‐caused quenching. Highly sensitive INHIBIT and XOR logic gates can be achieved by combining the intermolecular assembly with the intramolecular photoswitching of diprotonated TAPP (TAPPH22+). In addition, molecular simulations have been performed by DFT for a better understanding of the emission‐switching processes.  相似文献   

6.
Coskun A  Deniz E  Akkaya EU 《Organic letters》2005,7(23):5187-5189
[reaction, structure: see text] We report a unimolecular system functioning as a combinatorial logic circuit for half-subtractor. The emission characteristics can be modulated by chemical inputs, and when followed at two different wavelengths, two functionally integrated logic gates XOR and INHIBIT are obtained. Both logic gates function in the emission mode, and with very large differences in the signal intensity allowing unequivocal assignment of logic-0 and logic-1.  相似文献   

7.
A novel and versatile peptide‐based bio‐logic system capable of regulating cell function is developed using sortase A (SrtA), a peptide ligation enzyme, as a generic processor. By modular peptide design, we demonstrate that mammalian cells apoptosis can be programmed by peptide‐based logic operations, including binary and combination gates (AND, INHIBIT, OR, and AND‐INHIBIT), and a complex sequential logic circuit (multi‐input keypad lock). Moreover, a proof‐of‐concept peptide regulatory circuit was developed to analyze the expression profile of cell‐secreted protein biomarkers and trigger cancer‐cell‐specific apoptosis.  相似文献   

8.
Conventional electronic circuits can perform multi‐level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon‐based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer‐based multi‐level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer–target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer‐linked redox probes and solution‐phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi‐level logic operation, which has the potential to simplify an otherwise complex diagnosis to a “yes” or “no” decision.  相似文献   

9.
The logic system is obtained by using a series of double‐stranded (ds) DNA templates with mismatched base pairs (T–T or C–C) and ion‐modulated exonuclease III (Exo III) activity, in which the Exo III cofactors, Hg2+ and Ag+ ions, are used as inputs for the activation of the respective scission of Exo III based on the formation of T–Hg2+–T or C–Ag+–C base pairs. Additionally, two kinds of signal probes are utilized to transduce the logic operations. One is the two split G‐rich DNA strands that are used to design the OR, AND, INHIBIT, and XOR gates, whereas the other is the self‐assembled split G‐quadruplex structure to construct NOR, NAND, IMPLICATION, and XNOR operations based on DNA hybridization and strand displacement. In the presence of hemin, the split G‐quadruplex biocatalyzes the formation of a colored product, which is an output signal for the different logic gates. Thus, we have constructed a complete set of colorimetric DNA logic gates based on the Exo III and split G‐quadruplex for the first time. In addition, we are able to effortlessly recognize the logic output signals by the naked eye and their simplicity and cost‐effective design is the most apparent feature for the logic gates developed in this work.  相似文献   

10.
A DNA‐encoding strategy is reported for the programmable regulation of the fluorescence properties of silver nanoclusters (AgNCs). By taking advantage of the DNA‐encoding strategy, aqueous AgNCs were used as signal transducers to convert DNA inputs into fluorescence outputs for the construction of various DNA‐based logic gates (AND, OR, INHIBIT, XOR, NOR, XNOR, NAND, and a sequential logic gate). Moreover, a biomolecular keypad that was capable of constructing crossword puzzles was also fabricated. These AgNC‐based logic systems showed several advantages, including a simple transducer‐introduction strategy, universal design, and biocompatible operation. In addition, this proof of concept opens the door to a new generation of signal transducer materials and provides a general route to versatile biomolecular logic devices for practical applications.  相似文献   

11.
DNA-based photonic logic gates: AND,NAND, and INHIBIT   总被引:4,自引:0,他引:4  
Conventional microprocessors use elementary logic gates to perform complex computational tasks. Mimicking such computational processes using purely molecular systems has been limited in most cases by the lack of design generality or potential addressability of existing molecular logic gates. Herein we report that by employing the universal recognition properties of DNA simple photonic logic gates can be created that are capable of AND, NAND, and INHIBIT logic operations.  相似文献   

12.
In the fields of biocomputing and biomolecular, DNA molecules are applicable to be regarded as data of logical computing platform that uses elaborate logic gates to perform a variety of tasks. Graphene oxide (GO) is a type of novel nanomaterial, which brings new research focus to materials science and biosensors due to its special selectivity and excellent quenching ability. G-quadruplex as a unique DNA structure stimulates the intelligent application of DNA assembly on the strength of its exceptional binding activity. In this paper, we report a universal logic device assisted with GO and G-quadruplex under an enzyme-free condition. Integrated with the quenching ability of GO to the TAMRA (fluorophore, Carboxytetramethylrhodamine) and the enhancement of fluorescence intensity produced by the peculiar binding of G-quadruplex to the NMM (N-methylmesoporphyrin IX), a series of basic binary logic gates (AND. OR. INHIBIT. XOR) have been designed and verified through biological experiments. Given the modularity and programmability of this strategy, two advanced logic gates (half adder and half subtractor) were realized on the basis of the same work platform. The fluorescence signals generated from different input combinations possessed satisfactory results, which provided proof of feasibility. We believe that the proposed universal logical platform that operates at the nanoscale is expected to be utilized for future applications in molecular computing as well as disease diagnosis.  相似文献   

13.
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point‐of‐care (POC) diagnostics in a low‐resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic‐gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on‐site applications.  相似文献   

14.
This paper presents anthraquinone and benzimidazole based hybrid molecular architect as the state of the art for multifunctional molecular logic circuits. The moleculator exhibits differential output behavior towards F(-), Zn(2+) and Cu(2+) ions to provide opportunities for elaboration of XOR, INHIBIT, XNOR, AND, OR, NOR, logic functions and their integrated logic functions half-adder, half-subtractor and comparator within a single molecule. These integral logic functions can be reprogrammed by self-annihilation or by another additional input in the same cell. This single molecule behaves uniquely where different logic functions can be operated and reset by using different inputs and outputs.  相似文献   

15.
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point‐of‐care (POC) diagnostics in a low‐resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic‐gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on‐site applications.  相似文献   

16.
Label‐free logic gates (AND, OR, and INHIBIT) based on chemiluminescence (CL) as new optical readout signal have been developed by taking advantage of the unique CL activity of luminol‐ and lucigenin‐functionalized gold nanoparticles/graphene oxide (luminol‐lucigenin/AuNPs/GO) nanocomposites. It was found that Fe2+ ions could induce the CL emission of luminol‐lucigenin/AuNPs/GO nanocomposites in alkaline solution. On this basis, by using Fe2+ ions and NaOH as the inputs and the CL signal as the output, an AND logic gate was fabricated. When the initial reaction system contained luminol‐lucigenin/AuNPs/GO nanocomposites and NaOH, either Fe2+ ions or Ag+ ions could react with the luminol‐lucigenin/AuNPs/GO nanocomposites to produce a strong CL emission. This result was used to design an OR logic gate using Fe2+ ions and Ag+ ions as the inputs and CL signal as the output. Moreover, two INHIBIT logic gates for Fe2+ and Ag+ were also developed using by NaClO and L ‐cysteine as their CL inhibitors, respectively. Furthermore, the proposed logic gates were successfully used to detect Fe2+, Ag+, and L ‐cysteine, respectively. The developed logic gates may find future applications in sensing, clinical diagnostics, and environmental monitoring.  相似文献   

17.
Right out of the (logic) gate: Logic gates made from 3D DNA nanotetrahedra were constructed that are responsive to various ions, small molecules, and short strands of DNA. By including dynamic sequences in one or more edges of the tetrahedra, a FRET signal can be generated in the manner of AND, OR, XOR, and INH logic gates, as well as a half-adder circuit. These DNA logic gates were also applied to intracellular detection of ATP.  相似文献   

18.
Modern computer processors are based on semiconductor logic gates connected to each other in complex circuits. This study contributes to the development of a new class of connectable logic gates made of DNA in which the transfer of oligonucleotide fragments as input/output signals occurs upon hybridization of DNA sequences. The DNA strands responsible for a logic function form associates containing immobile DNA four‐way junction structures when the signal is high and dissociate into separate strands when the signal is low. A basic set of logic gates (NOT, AND, and OR) was designed. Two NOT gates, two AND gates, and an OR gate were connected in a network that corresponds to an XOR logic function. The design of the logic gates presented here may contribute to the development of the first biocompatible molecular computer.  相似文献   

19.
Reactions catalyzed by artificial allosteric enzymes, chimeric proteins with fused biorecognition and catalytic units, were used to mimic multi-input Boolean logic systems. The catalytic parts of the systems were represented by pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). Two biorecognition units, calmodulin or artificial peptide-clamp, were integrated into PQQ-GDH and locked it in the OFF or ON state respectively. The ligand-peptide binding cooperatively with Ca2+ cations to a calmodulin bioreceptor resulted in the enzyme activation, while another ligand-peptide bound to a clamp-receptor inhibited the enzyme. The enzyme activation and inhibition originated from peptide-induced allosteric transitions in the receptor units that propagated to the catalytic domain. While most of enzymes used to mimic Boolean logic gates operate with two inputs (substrate and co-substrate), the used chimeric enzymes were controlled by four inputs (glucose – substrate, dichlorophenolindophenol – electron acceptor/co-substrate, Ca2+ cations and a peptide – activating/inhibiting signals). The biocatalytic reactions controlled by four input signals were considered as logic networks composed of several concatenated logic gates. The developed approach allows potentially programming complex logic networks operating with various biomolecular inputs representing potential utility for different biomedical applications.  相似文献   

20.
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号