首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Reactions of hydroxyl radicals (*OH) with selenocystine (SeCys) and two of its analogues, diselenodipropionic acid (SeP) and selenocystamine (SeA), have been studied in aqueous solutions at pHs of 1, 7, and 10 using the pulse radiolysis technique coupled with absorption detection. All of these diselenides react with *OH radicals with rate constants of approximately 10(10) M(-1) s(-1), producing diselenide radical cations ( approximately 1-5 micros after the pulse), with an absorption maximum at 560 nm, by elimination of H(2)O or OH(-) from hydroxyl radical adducts. Assignment of the 560 nm band to the diselenide radical cation was made by comparing the transient spectra with those produced upon reaction of diselenides with specific one-electron oxidants, Cl(2)(*-) (pH 1) and Br(2)(*-) radicals (pHs of 7 and 10). SeP having a carboxylic acid functionality showed quantitative conversion of hydroxyl radical adducts to radical cations. The compounds SeCys and SeA, having an amino functional group, in addition to the radical cations, produced a new transient with lambda(max) at 460 nm, at later time scales ( approximately 20-40 micros after the pulse). The rate and yield of formation of the 460 nm band increased with increasing concentrations of either SeCys or SeA. In analogy with similar studies reported for analogous disulfides, the 460 nm transient absorption band has been assigned to a triselenide radical adduct. The one-electron reduction potentials of the compounds were estimated to be 0.96, 1.3, and 1.6 V versus NHE, respectively, for SeP, SeCys, and SeA at pH 7. From these studies, it has been concluded that the electron-donating carboxylic acid group decreases the reduction potential and facilitates quantitative conversion of hydroxyl radical adducts to radical cations, while the electron-withdrawing NH(3)(+) group not only increases the reduction potential but also leads to fragmentation of the hydroxyl radical adduct to selenyl radicals, which are converted to triselenide radical adducts.  相似文献   

2.
The transient optical absorption bands formed at λmax=340 and 435 nm, on reaction of OH radicals in aerated acidic aqueous solutions of 1,1,1-trifluoro-2-iodoethane at low and high solute concentration, have been assigned to monomer and dimer radical cations, respectively. The deprotonation of the solute radical cations is the rate-determining step for the decay of the dimer radical cations. The stability constant for the dimer radical cation is determined to be 50 dm3 mol−1 at 25°C. The dimer radical cation is a strong one-electron oxidant. Quantum chemical calculations and experimental results confirm that fluorine reduces the electron density at iodine and the OH-radical-induced oxidation of fluoroiodoalkanes becomes a difficult process compared to iodoalkanes.  相似文献   

3.
Abstract

Reactions of oxidizing radicals like hydroxyl (·OH) radical, specific electron transfer agents like N 3 ·, and I 2 ?. radicals were studied with selenourea (SeU) and compared with thiourea (ThU) using pulse radiolysis technique in microsecond time scales. Both the compounds efficiently react with ·OH radicals, however, SeU undergoes easier oxidation by secondary oxidants as compared to ThU. The results were supported by cyclic voltammetry studies. The radical cations of both SeU and ThU formed on oxidation undergo dimerization with the parent molecule to form two-centered three-electron-hemi bonded radical cations absorbing at 410 and 400 nm respectively with the stabilization energies of 21.1 and 20.5 kcal/mol for SeU and ThU, respectively. Preliminary studies indicated that at low concentration of SeU, the dimerization is prevented and the oxidation reaction produced metallic Se nanoparticles.  相似文献   

4.
We have observed the mixed-valence and radical cation dimer states of a glycoluril-based molecular clip with tetrathiafulvalene (TTF) sidewalls at low concentration (1 mM) at room temperature. This molecular clip has four consecutive anodic steps in its cyclic voltammogram, which suggests a sequential oxidation of these TTF sidewalls to generate species existing in several distinct charge states: neutral monomers, mixed-valence dimers, radical cation dimers, and fully oxidized tetracationic monomers. The observation of characteristic NIR spectroscopic absorption bands at approximately 1650 and 830 nm in spectroelectrochemistry experiments supports the presence of intermediary mixed-valence and radical cation dimers, respectively, during the oxidation process. The stacking of four TTF radical cations in the dimer led to the appearance of a charge-transfer band at approximately 946 nm. Nanoelectrospray ionization mass spectrometry was used to verify the tricationic state and confirm the existence of other different charged dimers during the oxidation of the molecular clip.  相似文献   

5.
In this study, the acid-base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A*(+)) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2*(-) in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8-H and N6-H in dAdo aid in our assignments of structure. We find the pKa value of A*(+) in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of < or = 1 at ambient temperature. However, upon thermal annealing to > or = 160 K, complete deprotonation of A*(+) occurs in dAdo in these glassy systems even at pH ca. 3. A*(+) found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A*(+) at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A*(+) should deprotonate spontaneously (a predicted pKa of ca. -0.3 for A*(+)). However, the charge resonance stabilized dimer AA*(+) is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA*(+) dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A*(+) isolated in solution and A*(+) in adenine stacks have highly differing acid-base properties resulting from the stabilization induced by hole delocalization within adenine stacks.  相似文献   

6.
The binding of nalidixic acid (NA) with human and bovine serum albumin (HSA and BSA) in buffer solution at pH 7.4 was investigated using circular dichroism (CD), UV absorption and fluorescence spectroscopy. Global analysis of multiwavelength spectroscopic data afforded the equilibrium constants of the most stable noncovalent drug/protein adducts of 1:1 and 2:1 stoichiometry and their individual CD, UV absorption, and fluorescence spectra. The primary binding site of the drug was located in subdomain IIIA (Sudlow Site II), whereas the secondary one was assigned to subdomain IIA. Conformational and CD calculations afforded the binding geometries. In the complexes, the fluorescence of the protein was strongly quenched by energy transfer and that of the drug was suppressed by electron transfer. Laser flash photolysis at 355 nm evidenced the formation of a radical pair consisting of a tyroxyl radical (lambdamax = 410 nm) and a reduced nalidixate anion radical NA(2-)* (lambdamax = 640 nm) with quantum yield of 0.4-0.5. Strong evidence was obtained that the process that involves Tyr411 in HSA (Tyr409 in BSA). A further transient with lambdamax approximately 780 nm observed in HSA was attributed to oxidation of the -(S200-S246)- bridge upon electron transfer to NA(-)*. Decay of the confined radical pairs occurred with rates approximately 10(7) s(-1). Formation of covalent drug-protein adducts in mixtures irradiated at lambdairr> 324 nm was proved using HPLC with fluorescence detection.  相似文献   

7.
The dynamics of one-electron oxidation of guanine (G) base mononucleotide and that in DNA have been investigated by pulse radiolysis. The radical cation (G+*) of deoxyguanosine (dG), produced by oxidation with SO(4)-*, rapidly deprotonates to form the neutral G radical (G(-H)*) with a rate constant of 1.8 x 10(7) s(-1) at pH 7.0, as judged from transient spectroscopy. With experiments using different double-stranded oligonucleotides containing G, GG, and GGG sequences, the absorbance increases at 625 nm, characteristic of formation of the G(-H)*, were found to consist of two phases. The rate constants of the faster ( approximately 1.3 x 10(7) s(-1)) and slower phases ( approximately 3.0 x 10(6) s(-1)) were similar for the different oligonucleotides. On the other hand, in the oligonucleotide containing G located at the 5'- and 3'-terminal positions, only the faster phase was seen. These results suggest that the lifetime of the radical cation of the G:C base pair (GC+*), depending on its location in the DNA chain, is longer than that of free dG. In addition, the absorption spectral intermediates showed that hole transport to a specific G site within a 12-13mer double-stranded oligonucleotide is complete within 50 ns; that is, the rate of hole transport over 20 A is >10(7) s(-1).  相似文献   

8.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

9.
A product and time-resolved kinetic study of the one-electron oxidation of ring-dimethoxylated phenylethanoic acids has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations or radical zwitterions depending on pH, and pK(a) values for the corresponding acid-base equilibria have been measured. The radical cations undergo decarboxylation with first-order rate constants (k(dec)) ranging from <10(2) to 5.6 x 10(4) s(-1) depending on radical cation stability. A significant increase in k(dec) (between 10 and 40 times) is observed on going from the radical cations to the corresponding radical zwitterions. The results are discussed in terms of the ease of intramolecular side chain to ring electron transfer required for decarboxylation, in both the radical cations and radical zwitterions.  相似文献   

10.
γ-irradiated acetone in polycrystalline CCl3F at 77 K has been studied by ESR to reveal that the acetone molecules tend to be oriented in CCl3F Matrix upon freezing the solution in ESR tubings. At higher concentrations both monomer and dimer radical cations of acetone are produced. The dimer cation is responsible for the optical absorption with λmax ≈ 740 nm.  相似文献   

11.
The pulse radiolysis technique has been employed to study the reaction of ·OH radical with tryptophanol (TPN). Reactions of specific one-electron oxidants like Br2· - and N3· and ·H atom were carried out to understand the contribution of different channels of · OH radical reaction with TPN. The studies were carried out in the pH range 3 to 10. One-electron oxidation of TPN (pH 3) produced radical cation absorbing at 570 nm. However, at higher pH, deprotonation of TPN cation radical takes place from N(1) position and indolyl radical absorbing at 520 nm with a p K a value of 3.6 is formed. Redox titration with TMPD, ABTS2- and MV2+ was performed to determine the total yield of oxidizing and reducing radicals produced during ·OH reaction.  相似文献   

12.
A product and time-resolved kinetic study on the one-electron oxidation of 2-(4-methoxyphenyl)-2-methylpropanoic acid (2), 1-(4-methoxyphenyl)cyclopropanecarboxylic acid (3), and of the corresponding methyl esters (substrates 4 and 5, respectively) has been carried out in aqueous solution. With 2, no direct evidence for the formation of an intermediate radical cation 2*+ but only of the decarboxylated 4-methoxycumyl radical has been obtained, indicating either that 2*+ is not formed or that its decarboxylation is too fast to allow detection under the experimental conditions employed (k > 1 x 10(7) s(-1)). With 3, oxidation leads to the formation of the corresponding radical cation 3*+ or radical zwitterion -3*+ depending on pH. At pH 1.0 and 6.7, 3*+ and -3*+ have been observed to undergo decarboxylation as the exclusive side-chain fragmentation pathway with rate constants k = 4.6 x 10(3) and 2.3 x 10(4) s(-1), respectively. With methyl esters 4 and 5, direct evidence for the formation of the corresponding radical cations 4*+ and 5*+ has been obtained. Both radical cations have been observed to display a very low reactivity and an upper limit for their decay rate constants has been determined as k < 10(3) s(-1). Comparison between the one-electron oxidation reactions of 2 and 3 shows that the replacement of the C(CH3)2 moiety with a cyclopropyl group determines a decrease in decarboxylation rate constant of more than 3 orders of magnitude. This large difference in reactivity has been qualitatively explained in terms of three main contributions: substrate oxidation potential, stability of the carbon-centered radical formed after decarboxylation, and stereoelectronic effects. In basic solution, -3*+ and 5*+ have been observed to react with -OH in a process that is assigned to the -OH-induced ring-opening of the cyclopropane ring, and the corresponding second-order rate constants (k-OH) have been obtained. With -3*+, competition between decarboxylation and -OH-induced cyclopropane ring-opening is observed at pH >or=10, with the latter process that becomes the major fragmentation pathway around pH 12.  相似文献   

13.
Initial processes of radiation-induced cationic polymerization of styrene and α-methylstyrene have been studied by means of microsecond pulse radiolysis. For styrene, absorption bands caused by the monomer cation radical St+? appear at 630 and 350 nm in a mixture of isopentane and n-butyl chloride at about ?165°C. In parallel with the decay of St+?, three absorption bands appear in the near-infrared (IR) region, and at 600 and 450 nm. The IR and 600 nm bands are assigned to the associated dimer cation radical St2+?, and the 450 nm band to the bonded dimer cation radical St-St+?. The kinetic behavior of these species shows that reaction of St+? with styrene monomer forms both St2+? and St-St+?. With the decay of St-St+?, another absorption band appears at 340 nm, and the lifetime of this band is relatively long. The 340 nm band may be due to carbonium ions of the growing polystyrene. For α-methylstyrene, the monomer cation radical (at 690 and 350 nm), the associated dimer cation radical (in the near-IR region and at 620 nm) and the bonded dimer cation radical (at 480 nm) behave in a manner similar to that of the corresponding styrene species. The absorption band caused by carbonium ions of growing poly(α-methylstyrene) appears at 340 nm.  相似文献   

14.
A stopped‐flow investigation by U.V. spectroscopy has been carried out using various reactions which yield the indanyl cation: polymerization of indene by trifluoromethane sulfonic acid (TfOH), ionization of 1‐chloroindane by antimony pentafluoride and protonation of a dimer of indene (2‐α‐indanyl indene) by TfOH, at variable temperature. The monomer and dimer cations present a main absorption at 318‐325 nm and the polyindene cation at 330 nm. A side reaction yields a derived cation, which absorbs at 519 nm. The molar absorbance of the indanyl cation has been estimated (ϵ=15 500 L.mol.−1 cm−1).  相似文献   

15.
Reaction of one-electron oxidant (Br(2)(*-)) with tryptophol (TP) and 5-hydroxytryptophol (HTP) have been studied in aqueous solution in the pH range from 3 to 10, employing nanosecond pulse radiolysis technique and the transients detected by kinetic spectrophotometry. One-electron oxidation of TP has produced an indolyl radical that absorbs in the 300-600 nm region with radical pK(a) = 4.9 +/- 0.2, while the reaction with HTP has produced an indoloxyl radical with lambda(max) at 420 nm and radical pK(a) < 3. Hydroxyl radicals ((*)OH) react with these two compounds producing (*)OH radical adducts that undergo water elimination to give one-electron-oxidized indolyl and indoloxyl radical species, respectively. The indoloxyl radicals react with the parent compound to form dimer radicals with an average association constant of (6.7 +/- 0.4) x 10(4) M(-1). No such dimerization is observed with indolyl radical, indicating that the presence of the 5-hydroxy group markedly alters its ability to form a dimer. A possible explanation behind such a difference in reactivity has been supported with ab initio quantum chemical calculations.  相似文献   

16.
The electrochemical and chemical oxidation of extended TTF 4 and 5 are analysed by cyclic voltammetry, Visible/NIR and ESR spectroscopies, and the X-ray structures of the new salts 5 x BF(4)(CH(2)Cl(2)) and 4 x ClO(4)(THF)(1/2) are presented. The effects of structural factors on the pi-dimerization or the disproportionation reaction of the cation radical are shown. The oxidation of compound 4 presents the successive formation of stable cation radical and dication species both in dichloromethane (DCM) and in a CH(3)CN/THF mixture. In contrast, for compound 5, the stability of the oxidation states strongly depends on the nature of the solvent. In DCM, the oxidation of 5 proceeds by two close one-electron transfers while in CH(3)CN/THF the dication is directly formed via a two-electron process. The X-ray structures of the two salts reveal the formation of pi-dimers of cation radical. While the dimer (5(2))(2+) is due mainly to pi-pi interactions between the conjugating spacer, the multiplication of the sulfur atoms in compound 4 contributes to stabilize the dimer by the combined effects of S-S and pi-pi interactions. Visible/NIR and ESR experiments confirm the higher tendency of 4(+)(.) to dimerize with the occurrence of dimer and monomer in solution, while for 5(+)(.) only the monomer is detected in DCM. On the other hand, by dissolution of 5 x BF(4)(CH(2)Cl(2)) in CH(3)CN, only the neutral and the dicationic states of compounds 5 are observed owing to the disproportionation reaction.  相似文献   

17.
A higher generation dendron with a long-alkyl chain thiol (DA2-SH) induced the formation of nanoparticles with a small core with quite a narrow size distribution (1.5 +/- 0.1 nm), the self-assembly of one-dimensional arrays of these gold nanoparticles (DA2-Au), and the stabilization for the formation of the radical cation of the phenothiazine of DA2-Au nanoparticles from the interfacial one-electron oxidation of the nanoparticles with NOBF4.  相似文献   

18.
Doubly pyrene (Py)-conjugated oligodeoxynucleotides (ODNs) were synthesized and used for measurement of the formation rates of Py dimer radical cation (Py(2)(.+)) upon one-electron oxidation during the pulse radiolyses. Formation of Py radical cation (Py(.+)) in the time scale of less than 5 micros was monitored at 470 nm after an electron pulse during pulse radiolysis of D(2)O solution of doubly Py-conjugated ODN in the presence of K(2)S(2)O(8). Concomitant with the decay of Py(.+), formation of Py(2)(.+) with an absorption peak at 1500 nm (charge resonance band) was observed in the time range of approximately 100 micros. The formation rate of Py(2)(.+) in DNA reflected the dynamics of DNA which allows the interaction between Py(.+) and Py, since transiently formed DNA structure is trapped by the attractive charge resonance (CR) interaction to give Py(2)(.+). The formation rate of Py(2)(.+) with a characteristic CR absorption band in the near-infrared (near-IR) region was demonstrated to be useful to obtain the structural and dynamical information of transiently formed DNA in the time range of 1 micros to 1 ms.  相似文献   

19.
A stable derivative of 1,2-dithiin annelated with bicyclo[2.2.2]octene frameworks 4 was synthesized as red crystals by the reaction of a dilithiated dimer of bicyclo[2.2.2]octene with elemental sulfur in 59% yield. The cyclic voltammetry of 4 in CH(2)Cl(2) at -78 degrees C showed two reversible oxidation waves at E(1/2) +0.18 V and +0.72 V versus Fc/Fc(+), indicating that the radical cation and dication of 4 are stable under these conditions. Upon chemical one-electron oxidation of 4 in a rather low concentration (4.0 x 10(-4) M) with a 1.5 equiv of SbCl(5) in CH(2)Cl(2), a radical cation 4.+ was formed, whose spin distribution was determined by ESR spectroscopy and by the results of theoretical calculations (UB3LYP/6-31G). The electronic absorption spectrum of 4.+ in CH(2)Cl(2) exhibited a maximum absorption at 428 nm (epsilon = 2.3 x 10(3)), which was hypsochromically shifted from that of neutral 4 (469 nm). When the radical cation 4.+ was produced in higher concentration (0.06 M) in CH(2)Cl(2), a disproportionation was found to take place to give a SbCl(6)(-) salt of remarkably stable radical cation 5.+ having a novel 2,3,5,6-tetrathiabicyclo[2.2.2]oct-7-ene structure. In the X-ray structure of 5.+SbCl(6)(-), the transannular distance (2.794(3) A) between the sulfur atoms was found to be less than the sum of the van der Waals radii of a sulfur atom (3.70 A), suggesting the existence of a bonding interaction between the two disulfide linkages. The theoretical calculations (UB3LYP/6-31G) suggested that this transannular interaction could be described as the resonance between the limiting structures, each of them having a two-center three-electron bond between two sulfur atoms belonging to two different disulfide linkages: thus, both the spin and positive charge are equally delocalized to the four sulfur atoms, causing a great stabilization of 5.+. On the other hand, the 1,2-dithiin radical cation 4.+ was found to readily react with triplet oxygen with subsequent rearrangement to give the 1,2-dithiolium derivative 6+ having a carboxyl group. Finally, the reaction of 4 with an excess amount of SbF(5) gave the corresponding dication 4(2+), which was found to be a 6pi aromatic system on the basis of the results of NMR measurement and theoretical calculations.  相似文献   

20.
Neighboring group participation was investigated in the *OH-induced oxidation of S-methylglutathione in aqueous solutions. Nanosecond pulse radiolysis was used to obtain the spectra of the reaction intermediates and their kinetics. Depending on the pH, and the concentration of S-methylglutathione, pulse irradiation leads to different transients. The transients observed were an intramolecularly bonded [>S thereforeNH2]+ intermediate, intermolecularly S thereforeS-bonded radical cation, alpha-(alkylthio)alkyl radicals, alpha-amino-alkyl-type radical, and an intramolecularly (S thereforeO)+-bonded intermediate. The latter radical is of particular note in that it supports recent observations of sulfur radical cations complexed with the oxygen atoms of peptide bonds and thus has biological and medical implications. This (S thereforeO)+-bonded intermediate had an absorption maximum at 390 nm, and we estimated its formation rate to be >or=6x10(7) s(-1). It is in equilibrium with the intermolecularly S thereforeS-bonded radical cation, and they decay together on the time scale of a few hundred microseconds. The S thereforeS-bonded radical cation is formed from the monomeric sulfur radical cation (>S*+) and an unoxidized S-methylglutathione molecule with the rate constant of 1.0x10(9) M(-1) s(-1). The short-lived [>S thereforeNH2]+ intermediate is a precursor of decarboxylation, absorbs at approximately 390 nm, and decays on the time scale of hundreds of nanoseconds. Additional insight into the details of the association of sulfur radical cations with the oxygen atoms of the peptide bonds was gained by comparing the behavior of the S-methylglutathione (S thereforeO+-bonded five-membered ring) with the peptide gamma-Glu-Met-Gly (S thereforeO+-bonded six-membered ring). Conclusions from experimental observations were supported by molecular modeling calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号