首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
It is proved that, for every rational function of two variables P(x, y) of analytic complexity one, there is either a representation of the form f(a(x) + b(y)) or a representation of the form f(a(x)b(y)), where f(x), a(x), b(x) are nonconstant rational functions of a single variable. Here, if P(x, y) is a polynomial, then f(x), a(x), and b(x) are nonconstant polynomials of a single variable.  相似文献   

2.
3.
V. P. Ruban 《JETP Letters》2016,103(12):780-784
The equation of motion of a quantized vortex filament in a trapped Bose–Einstein condensate [A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000)] has been generalized to the case of an arbitrary anharmonic anisotropic rotating trap and presented in the variational form. For condensate density profiles of the form ρ = f(x2 + y2 + ReΨ(x + iy)) in the presence of the plane of symmetry y = 0, the solutions x(z) describing stationary vortices of U and S types coming to the surface and solitary waves have been found in quadratures. Analogous three-dimensional configurations of the vortex filament uniformly moving along the z axis have also been found in strictly cylindrical geometry. The dependence of solutions on the form of the function f(q) has been analyzed.  相似文献   

4.
A version of the solution of the problem of simultaneous determination of the structure and characteristics of a two-dimensional signal and of two-dimensional complex transfer or instrumental functions is considered. The solution is based on measurements of four independent intensity distributions for spectral representation of a signal: Isr(Wx, Wy) for a signal subjected to the transfer function, Ismrn(Wx, Wy) for a signal affected by additional specially produced modulation and the transfer function, Isrn(Wx, wy) for a signal of the form Isr(Wx, Wy) with a certain additional modulation at the output, and /5mm(wx,u/y) for a signal of the form Ismr(Wx, Wy) with a certain additional modulation at the output. The intensity distributions obtained in the work make it possible to calculate the amplitude and phase components of the signal being analyzed and the transfer function. Additional modulations should provide visualization of phase information in one form or another.Linear amplitude modulation, which represents a particular form of spatial modulation, is analyzed. For this case, concrete expressions making it possible to calculate the amplitude and phase characteristics of the spectra of the signal being analyzed and the transfer function and, therefore, the characteristics of both the signal itself and the transfer function are obtained.  相似文献   

5.
We discuss the procedure of different partitions in the finite set of N integer numbers and construct generic formulas for a bijective map of real numbers s y , where y = 1, 2,…, N, N = \( \underset{k=1}{\overset{n}{\varPi}}{X}_k, \) and X k are positive integers, onto the set of numbers s(y(x 1, x 2,…, x n )). We give the functions used to present the bijective map, namely, y(x 1, x 2, …, x n ) and x k (y) in an explicit form and call them the functions detecting the hidden correlations in the system. The idea to introduce and employ the notion of “hidden gates” for a single qudit is proposed. We obtain the entropic-information inequalities for an arbitrary finite set of real numbers and consider the inequalities for arbitrary Clebsch–Gordan coefficients as an example of the found relations for real numbers.  相似文献   

6.
The EPR spectrum of a KDy(WO4)2 monoclinic crystal is investigated. It is found that the EPR spectrum of magnetically concentrated materials at a low frequency (9.2 GHz) undergoes a substantial transformation in addition to the well-known broadening of the EPR lines. At low Dy3+ concentrations (x<10?2), the EPR spectrum of an isomorphic crystal, namely, KY(1?x)Dyx(WO4)2, is characterized by the parameters gx=0, gy=1.54, and gz=14.6. For a magnetically concentrated crystal KDy(WO4)2, the g values are as follows: gx=0, gy=0.82, and gz=2.52. It is demonstrated that the difference in the parameters is associated with the specific spin-spin interaction between Dy3+ ions, including the Dzyaloshinski interaction, which is not observed at high frequencies.  相似文献   

7.
The structure of the optical centers of Eu3+ ions in tetragonal (ZrO2)1–xy (Y2O3) x (Eu2O3) y (х = 2.7–3.6; y = 0.1) and cubic (ZrO2)1–xy (Y2O3) x (Eu2O3) y (х = 8–38; y = 0.1–0.5) crystals of solid solutions on the basis of zirconium dioxide is studied using the methods of optical and Raman-scattering spectroscopy. Characteristic optical centers of Eu3+ ions with different crystalline environments are revealed in the above compounds.  相似文献   

8.
We show in details how to determine and identify the algebra g = {Ai} of the infinitesimal symmetry operators of the following pseudo-diffusion equation (PSDE) LQ\(\left[ {\frac{\partial }{{\partial t}} - \frac{1}{4}\left( {\frac{{{\partial ^2}}}{{\partial {x^2}}} - \frac{1}{{{t^2}}}\frac{{{\partial ^2}}}{{\partial {p^2}}}} \right)} \right]\) Q(x, p, t) = 0. This equation describes the behavior of the Q functions in the (x, p) phase space as a function of a squeeze parameter y, where t = e 2y. We illustrate how G i(λ) ≡ exp[λA i] can be used to obtain interesting solutions. We show that one of the symmetry generators, A 4, acts in the (x, p) plane like the Lorentz boost in (x, t) plane. We construct the Anti-de-Sitter algebra so(3, 2) from quadratic products of 4 of the A i, which makes it the invariance algebra of the PSDE. We also discuss the unusual contraction of so(3, 1) to so(1, 1)? h2. We show that the spherical Bessel functions I 0(z) and K 0(z) yield solutions of the PSDE, where z is scaling and “twist” invariant.  相似文献   

9.
The parabolic Anderson model is defined as the partial differential equation ? u(x, t)/? t = κ Δ u(x, t) + ξ(x, t)u(x, t), x ∈ ? d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u(x, 0) = u 0(x), x ∈ ? d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2d κ, split into two at rate ξ ∨ 0, and die at rate (?ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents
$$ \lambda _{p}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t} \log \mathbb {E} ([u(0,t)]^{p})^{1/p}, \quad p \in \mathbb{N} , \qquad \lambda _{0}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t}\log u(0,t). $$
For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ??, where ?? = {??(x, y) : x, y ∈ ? d , xy} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (??), p?, are given by the formula
$$ \lambda _{p}(\mathcal{K} ) = \text{sup} \{\lambda _{p}(\kappa ) : \, \kappa \in \text{Supp} (\mathcal{K} )\}, $$
where, for a fixed realisation of ??, Supp(??) is the set of values taken by the ??-field. We also show that for the associated quenched Lyapunov exponent λ 0(??) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(??) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all ?? satisfying a certain clustering property, namely, there are arbitrarily large balls where ?? is almost constant and close to any value in Supp(??). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of ?? where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of ?? where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.
  相似文献   

10.
The temperature dependence of the Nernst-Ettingshausen coefficient Q(T) in the normal phase of doped HTSCs of the yttrium system was studied. The main features characterizing the behavior of this coefficient were revealed, and the character and mechanism of the effect that various nonisovalent substituents exert on the Q(T) dependence were analyzed. It is shown that the narrow-band model permits one not only to describe all the specific features observed in the Q(T) curves but also to perform a simultaneous quantitative analysis of the temperature dependences of four kinetic coefficients (the electrical resistivity and the Seebeck, Hall, and Nernst-Ettingshausen coefficients) with the use of a common set of model parameters characterizing the band structure and carrier system in the normal phase of an HTSC. This approach was employed to determine the carrier mobilities and the asymmetry of the dispersion curve in the systems studied (YBa2Cu3Oy, y = 6.37–6.91; YBa2Cu3?xCoxOy, x = 0–0.3; Y1?xCaxBa2Cu3Oy, x = 0–0.25; Y1?xCaxBa2?xLaxCu3Oy, x = 0–0.5) and to analyze the effect of the substitutions involved on the variation of these parameters.  相似文献   

11.
The first thin La1?xAgyMnO3 epitaxial films (yx) were grown on SrTiO3 (110) substrates with silver present in the ionized state (Ag+) only. The Curie temperatures TC of the compositions with x = y = 0.05, x = y = 0.1, and x = 0.3 and y = 0.27 crystallizing in the hexagonal structure \(R\bar 3c\) above or close to room temperature. The temperature dependences of electrical resistivity ρ and of magnetoresistance ¦Δρ/ρ/¦ = ¦(ρH ? ρ H = 0)/ρH=0¦ pass through maxima near TC, with the magnetoresistance being negative and reaching colossal values of ~7–20% in a magnetic field H = 8.2 kOe not only at TC but also at room temperature. The magnetic moment per formula unit as derived from the saturation magnetization at T = 5 K is substantially smaller than expected for complete ferromagnetic ordering. The magnetization in fields of up to 6 kOe depends on the actual sample cooling conditions, and the hysteresis loop of a field-cooled sample is displaced along the H axis by ΔH. The above properties can be accounted for by the fact that the films are in a two-phase magnetic (ferromagnetic-antiferromagnetic) state induced by strong s-d exchange. The maximum value of Δ H was used to calculate the energy of exchange coupling between the ferromagnetic and antiferromagnetic parts of a sample.  相似文献   

12.
Ceramic solid solutions (Bi1 ? x La x )4V2O11 ? z (I), Bi4(V1 ? x Fe x )2O11 ? y (II), and (Bi1 ? x La x )4(V0.96Fe0.04)2O11 ? y (III) (x = 0–0.3, step Δx = 0.02) are prepared using solid-phase synthesis. The concentration and temperature ranges of stabilization of different polymorphic modifications, including the ranges of concentrations x corresponding to the stabilization of the ferroelectric phase, are established. It is revealed that an increase in the concentration x in the region of existence of the pseudoorthorhombic phase α of the solid solutions studied leads to a decrease in the transition temperature, smearing of the transition, and an increase in the width of the thermal hysteresis of the ferroelectric phase transition. The effect of compressing of the domain walls by oxygen vacancies was revealed in the samples from the region of existence of the ferroelectric α phase, and the effect of dielectric relaxation was detected in the samples from the region of existence of the orthorhombic phase β.  相似文献   

13.
The paper is devoted to the investigation, using the method of Cartan–Laptev, of the differential-geometric structure associated with a Lagrangian L, depending on a function z of the variables t, x 1,...,x n and its partial derivatives. Lagrangians of this kind are considered in theoretical physics (in field theory). Here t is interpreted as time, and x 1,...,x n as spatial variables. The state of the field is characterized by a function z(t, x 1,..., x n ) (a field function) satisfying the Euler equation, which corresponds to the variational problem for the action integral. In the present paper, the variables z(t, x 1,..., x n are regarded as adapted local coordinates of a bundle of general type M with n-dimensional fibers and 1-dimensional base (here the variable t is simultaneously a local coordinate on the base). If we agree to call t time, and a typical fiber an n-dimensional space, then M can be called the spatiotemporal bundle manifold. We consider the variables t, x 1,...,x n , z (i.e., the variables t, x 1,...,x n with the added variable z) as adapted local coordinates in the bundle H over the fibered base M. The Lagrangian L, which is a coefficient in the differential form of the variational action integral in the integrand, is a relative invariant given on the manifold J 1 H (the manifold of 1-jets of the bundle H). In the present paper, we construct a tensor with components Λ00, Λ0i , Λ ij ij = Λ ji ) which is generated by the fundamental object of the structure associated with the Lagrangian. This tensor is an invariant (with respect to admissible transformations the variables t, x 1,...,x n , z) analog of the energy-momentum tensor of the classical theory of physical fields. We construct an invariant I, a vector G i , and a bivalent tensor G jk generated by the Lagrangian. We also construct a relative invariant of E (in the paper, we call it the Euler relative invariant) such that the equation E = 0 is an invariant form of the Euler equation for the variational action integral. For this reason, a nonvariational interpretation of the Euler equation becomes possible. Moreover, we construct a connection in the principal bundle with base J 2 H (the variety of 2-jets of the bundle H) and with the structure group GL(n) generated by the structure associated with the Lagrangian.  相似文献   

14.
It is shown that the singular set of an extended “inverse” integral curve x(y) of the Van der Pol equation is covered with local extrema of x(y) that are stable with respect to small perturbations in the equation. As a consequence, the qualitative behavior of x(y) can be determined and some of its important properties can be understood.  相似文献   

15.
The dielectric spectra of Pb(1–z)Ba z (Mg1/3Nb2/3) m (Zn1/3Nb2/3) y (Ni1/3Nb2/3) n TixO3 (x = 0.25–0.4, y = 0.1130–0.0842, m = 0.4844–0.1298, n = 0.1266–0.4726, z = 0–0.15) ceramics with substitution in both A and B crystallographic positions of the perovskite structure are studied. The system demonstrates a transition from the relaxor state to the normal ferroelectric state in both cases: when the concentration of lead titanate grows and the concentration of barium is reduced. On the basis of experimental results, the x–T and z–T phase diagrams are plotted. Despite different crystal chemical reasons of the relaxor state emergence in the investigated solid solutions, their diagrams demonstrate an evident similarity. We have revealed the disappearance of the temperature hysteresis at the transition to the relaxor state in both cases, which has allowed us to make an assumption of the existence of tricritical points on the corresponding diagrams.  相似文献   

16.
The preparation of a wide class of entangled vibrational states involving two or three phononic modes of a three-dimensional trapped ion has been reported in the literature from both theoretical and experimental points of view. Here, the time evolution of such a system from an initial condition wherein two oscillatory modes (M x, M y) are reciprocally entangled and both are disentangled to the third mode (M z) is studied. By coupling one of the entangled oscillators (M x) with the third oscillator (M z), a correlation between the two uncoupled modes (M y, M z) is induced, well visible when the mean value of a suitable operator is considered. A method of measuring the expectation value of a vibrational observable is briefly sketched and then exploited in order to reveal such nonclassical behavior.  相似文献   

17.
Standard enthalpies of formation for solid solutions of composition Nd1 + x Ba2 ? x Cu3O y (x = 0–0.8, y = 6.65–7.24) from oxides were determined by solution calorimetry. The heat capacity of NdBa2Cu3O6.87 phase was measured in the range 5–320 K by low-temperature adiabatic calorimetry. The absolute entropy S o(T), the difference of enthalpies H o(T)-H o(0 K), and the reduced Gibbs energy Φo(T) = S o(T)–[H o(T)–H o(0)]/T were calculated on the basis of smoothed dependence C p (T) in the 0–320 K range. An assessment was made for the heat capacities and the absolute entropies of solid solutions Nd1+x Ba2?x Cu3O y . The obtained set of thermodynamic parameters can be used for the calculation of phase equilibria in the Nd-Ba-Cu-O system.  相似文献   

18.
The thermoelectric properties of n-Bi2 ? x Sb x Te3 ? y ? z Se y S z solid solutions are studied in the temperature range 300–550 K. It is shown that an increase in the parameter β determining the figure-of-merit Z of the material is observed in compositions with the optimally related effective mass of the density of states m/m 0, the carrier mobility μ0, and the lattice thermal conductivity κ L . Within the temperature range 300–350 K, the parameter β and the figure-of-merit Z are found to increase in solid solutions with substitutions in both bismuth telluride sublattices Bi → Sb and Te → Se, S (x = 0.16, y = z = 0.12) for optimum electron concentrations. An increase in the electron concentration and substitutions of atoms only in the tellurium sublattice bring about an increase in the β parameter and the value of Z at higher temperatures. Within the range 350–450 K, the parameters β and Z are observed to increase in a solid solution with a low content of substituted atoms in the tellurium sublattice Te → Se, S for y = z = 0.09 and, at higher temperatures up to 550 K, in compositions with tellurium substituted by selenium only, with increasing content of substituted atoms.  相似文献   

19.
We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3d xz and 3d yz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 × 4 × 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d + = 3d (x + iy)z and d ? = 3d (x ? iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.  相似文献   

20.
We discuss the Josephson effect for pairing states which break crystal symmetries in addition to gauge symmetry. We consider theE 1g andE 2u models for the low-temperature phase ofUPt 3, with order parameters Δ(E 1g )~p z (p x +ip y ) and Δ(E 2u )~p z (p x +ip y )2. We report calculations of Josephson critical currents, taking into account the effects of depairing at the interface. For singlet-triplet junctions the critical current is non-zero only for spin-orbit, spin-flip tunneling, and is found to be much smaller than the Ambegaokar-Baratoff value even when the spin-orbit tunneling amplitude is comparable to the spin-independent amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号