首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Raman spectroscopy was performed to investigate microscopic structural changes associated with a ripple structure formation initiated by femtosecond laser irradiation on the surface of single-crystal silicon carbide. The amorphous phases of silicon carbide, silicon, and carbon were observed. The intensity ratio between amorphous silicon carbide and silicon changed discretely at the boundary between fine and coarse ripples. The physical processes responsible for the formation of the ripple structure are discussed.  相似文献   

2.
碳化硅表面硅改性层的磁介质辅助抛光   总被引:3,自引:1,他引:2  
张峰  邓伟杰 《光学学报》2012,32(11):1116001
为了实现碳化硅表面硅改性层的精密抛光,获得高质量光学表面,对磁介质辅助抛光技术进行研究。设计了适合碳化硅表面硅改性层抛光的磁介质辅助抛光工具,并对抛光工具的材料去除函数进行研究。针对材料去除函数的特性,对数控磁介质辅助抛光的驻留时间算法进行了研究。采用磁介质辅助抛光技术对碳化硅表面硅改性层平面样片进行了抛光实验。经过一次抛光迭代,碳化硅样片表面硅改性层的面形精度(均方根)由0.049λ收敛到0.015λ(λ=0.6328 μm),表面粗糙度从2 nm改善至0.64 nm。实验结果表明基于矩阵代数的驻留时间算法有效,磁介质辅助抛光适合碳化硅表面硅改性层加工。  相似文献   

3.
Experimental data on the preparation of stoichiometric nanoporous silicon carbide are analyzed. Theoretical calculations are performed under the assumption that nanopores are formed through the vacancy diffusion mechanism. The results obtained confirm the hypothesis that the formation of pores with a steadystate radius of several tens of nanometers in silicon carbide can be associated with the diffusion and clustering of vacancies. The experimental data indicating that the proposed mechanism of formation of nanoporous silicon carbide correlates with the existing model of formation of porous silicon carbide with a fiber structure are discussed. This correlation can be revealed by assuming that nanopores are formed at the first stage with subsequent transformation of the nanoporous structure into a fiber structure due to the dissolution of the material in an electrolyte.  相似文献   

4.
王彤彤 《发光学报》2013,34(11):1489-1493
采用具有良好比刚度和热稳定性的碳化硅材料作为基底,使用全息-离子束刻蚀技术制作了光栅。碳化硅材料表面固有缺陷导致制作的光栅刻槽表面粗糙度高,槽底和槽顶粗糙度分别达到了29.6 nm和65.3 nm (Rq)。通过等离子辅助沉积技术在碳化硅表面镀制一层均匀的硅改性层,经过抛光可以获得无缺陷的超光滑表面。XRD测试表明制备的硅改性层为无定形结构。原子力显微镜的测试结果表明:经过抛光后,表面粗糙度为0.64 nm(Rq)。在此表面上制作的光栅刻槽表面粗糙度明显降低,槽底和槽顶粗糙度分别为2.96 nm和7.21 nm,相当于改性前的1/10和1/9。  相似文献   

5.
The heating behavior of silicon carbide reaction platforms under 2.45 GHz microwave irradiation was investigated with the aid of online thermoimaging cameras and multiple-channel fiber-optic probe temperature sensors placed inside the wells/vials of the silicon carbide microtiter plates. Microwave irradiation leads to a rapid and homogeneous heating of the entire plate, with minimal deviations in the temperature recorded at different positions of the plate or inside the wells. In temperature-controlled experiments using dedicated multimode reactors, solvents with different microwave absorption characteristics can be heated in parallel in individual wells/vials of the silicon carbide plate reaching the same set temperature. Due to the large heat capacity and high thermal conductivity of silicon carbide, the plates are able to moderate any field inhomogeneities inside a microwave cavity. Although the heating of the plates can be performed extremely efficiently inside a microwave reactor, heating and synthetic applications can alternatively be carried out by applying conventional conductive heating of the silicon carbide plates on a standard hotplate. Due to the slower heating of the silicon carbide material under these conditions, somewhat longer reaction times will be required.  相似文献   

6.
Molecular-mechanical and semiempirical quantum-mechanical methods have been applied to simulate and calculate a geometrically optimized structure of clusters of polymorphic types of silicon carbide, and their structural parameters and some properties (densities, sublimation energies) have been determined. A classification of silicon carbide phases has been proposed, which shows the possible existence of twenty one SiC phases whose atoms are at crystallographically equivalent sites. The structures of seventeen proposed silicon carbide phases have been described and studied for silicon carbide for the first time.  相似文献   

7.
This study examines the fabrication process and mechanical properties of piezoelectric films with the substrate, which is made from silicon carbide. After depositing the PZT thick film on silicon carbide substrate and silicon substrate respectively, it was shown that silicon carbide substrate formed a stable interface with PZT thick film up to 950?°C, compared with silicon substrate. In addition, the dielectric constant of the PZT thick film sintered at 950?°C on a silicon carbide substrate was 843, and this value was about over 25 % improved value compared with that on a silicon substrate. A thick film piezoelectric micro transducer of a micro cantilever type was fabricated by using a multifunctional 3C–SiC substrate. The fabricated micro cantilever was a micro cantilever with multiple thin films on either silicon or silicon carbide substrate. The piezoelectric thick-film micro cantilever that was fabricated by using a SiC substrate showed excellent mechanical and thermal properties. The piezoelectric micro cantilever on the SiC substrate shows an excellent sensitivity towards the change of mass compared with the piezoelectric micro cantilever on the Si substrate.  相似文献   

8.
β-Silicon carbide layers have been prepared by high temperature pyrolysis of polyimide Langmuir-Blodgett films on porous silicon substrate in vacuum. The formation of silicon carbide is confirmed by the IR and XRD spectra. It is found that photoluminescence still exists and appears in the blue-green and ultraviolet regions after thermal treatment at 900°C. These results indicate that the silicon carbide layers, which are formed, are responsible for the blue-green luminescence.  相似文献   

9.
The Raman spectra of mosaic silicon carbide films grown on silicon substrates by solid-state epitaxy have been studied. The main polytypes forming the film material have been determined. It has been experimentally revealed that the properties of the silicon carbide film are changed after an aluminum nitride film is deposited on the former film. This has been interpreted as a manifestation of good damping properties of the SiC film when layers of other semiconductors are grown on it.  相似文献   

10.
The silicon carbide (SiC) surface is more complex than that of silicon and can be carbon-terminated or silicon-terminated, and can exist as several reconstructions. Investigations of the surface structure as a function of temperature, under ultrahigh vacuum (UHV) conditions using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED), are presented. The 4H-SiC surface can be passivated using a silicon deposition/evaporation technique to reconstruct the surface. This has a significant effect on the electrical behaviour of metal contacts to the silicon carbide surface, critical in any electronic device. Atomic resolution STM studies of the 4H-SiC surface have revealed step features and micropipe defects in unprecedented detail. STM has also been used to image clusters of metal deposited on the 4H-SiC surface. The effect of annealing on the behaviour of these nickel clusters is also presented. The surface of the silicon carbide is extremely important in the fabrication of silicon carbide electronic devices and this paper presents a discussion of the SiC surface with particular reference to its impact on SiC device applications in power electronics.  相似文献   

11.
Pezoldt  J.  Lubov  M. N.  Kharlamov  V. S. 《Physics of the Solid State》2019,61(12):2468-2472
Physics of the Solid State - A kinetic Monte Carlo model of silicon carbide growth on silicon surface is proposed. Based on this model, the growth of silicon carbide clusters on silicon in the...  相似文献   

12.
The formation of thin silicon carbide layers as a result of solid-phase processes is related to the evolution of nanoscale porosity and chemical reactions on pore surfaces. Numerical experiments, which simulate blistering under the action of Xe+ ions in the metal-insulator (Mo/Si) bilayer make it possible to establish the relationship between the porosity parameters and layer stresses and the irradiation conditions. Similar patterns in the formation of defects (pores and cracks) in crystalline silicon characterize its interaction with carbon dioxide when silicon carbide is formed. The calculated characteristics of the nucleation in the Mo/Si bilayers are analyzed to optimize the solid-phase epitaxy of silicon carbide.  相似文献   

13.
《Physics letters. A》2019,383(17):2076-2081
We have theoretically investigated the effect of applying longitudinal and transverse electric field on silicon carbide nanotubes with different orientations of Stone Wales defects. We found that each type of Stone Wales defects maintained different formation energy. We have also successfully proved that the orientation of Stone Wales defects in silicon carbide nanotubes response quite differently upon applying external electric field, whereas, two important and interesting phenomena were observed. First, the semiconductor-metal phase transition occurred in silicon carbide nanotubes as well as the three types of Stone Wales defects. However, clear band gap variations were observed in all silicon carbide nanotubes under study. Second, the band gap variations in pristine silicon carbide nanotubes and nanotubes with different orientations of Stone Wales defects have the same trend, even though all silicon carbide nanotubes have clear band gap values under different strengths of the applied external electric field. However, band gap tuning under longitudinal electric field is less significant compared to band gap tuning under the transverse electric field.  相似文献   

14.
The results obtained in our previous work [4] are revised taking into account the dependence of the electron affinity on the polytype of silicon carbide SiC. The dependence of the energy level of vacancies in a polytype of silicon carbide on the band gap is determined from the data on the Schottky barrier height and is explained in the framework of a simple two-band model.  相似文献   

15.
The method for carbothermal reduction of spherical particles of amorphous silicon dioxide is developed, and hexagonal α-SiC polytype nanocrystals are synthesized. The prepared samples are characterized by X-ray diffraction, Raman spectroscopy, photoluminescence spectroscopy, and electron microscopy. The silicon carbide nanocrystals prepared have sizes in the range 5–50 nm depending on the diameter of initial silicon dioxide particles. A detailed analysis of the positions of the lines in the Raman spectra, their broadening, and shift makes it possible to reliably establish that the samples under investigation predominantly contain the 6H and 4H silicon carbide polytypes and insignificant amounts of the 2H and 3C phases. The 15R and 21R polytypes in the samples are absent. It is noted that the samples are characterized by a substantial size effect: the luminescence intensity of small silicon carbide nanocrystals is more than three times higher than that of large SiC nanocrystals.  相似文献   

16.
The discovery of unique magnetooptical properties of paramagnetic centers in silicon carbide, which make it possible to control spins of small arrays of centers of atomic sizes to single centers at room temperatures, using the techniques of optical detection of the magnetic resonance, posed a number of problems, among which one of the main ones is the creation of conditions under which spin relaxation effects are minimized. As studies of properties of spin nitrogen-vacancy centers in diamond showed, the main contribution to spin relaxation is made by the interaction with nitrogen donors, being a major impurity in diamond. A similar problem exists for silicon carbide, since nitrogen donors are also basic background impurities. The objective of this work is to study the spatial distribution of the spin density of nitrogen donors in two basic silicon carbide polytypes, i.e., 4H-SiC and 6H-SiC, to use this information for minimizing the interaction of nitrogen donors with paramagnetic centers in silicon carbide. The results of the study are analyzed by magnetic resonance methods; the spin density distribution on the nearest coordination spheres of nitrogen donors occupying carbon sites in silicon carbide is determined. It is concluded that paramagnetic centers in the 4H-SiC polytype, including silicon vacancies, can be more stable to the interactions with unpaired donor electrons, since electrons are not localized on the coordination sphere closest to the paramagnetic center in this case.  相似文献   

17.
Silicon carbide samples synthesized from silicon by topochemical substitution of atoms are studied by the ion channeling method. The results of the analysis unambiguously demonstrate the occurrence of structural heteroepitaxy. The lattice of synthesized silicon carbide of hexagonal polytype 6H is epitaxially matched in the 〈0001〉 direction with the lattice grating grid array network of an initial substrate silicon in the 〈111〉 direction. The main features of structural self-coupling matching in this epitaxial heterocomposite are revealed. Despite the very large silicon carbide and silicon lattice parameter mismatch, the misfit dislocation density at the interface is low, which is a feature of the topochemical substitution method leading to comparable structures.  相似文献   

18.
The luminescence spectra of silicon carbide films grown on silicon by solid-state epitaxy have been studied. It has been shown that, depending on the growth conditions, one can obtain films of different SiC polytypes, including the cubic and hexagonal ones. In many cases, the films thus grown display a mixture of various polytypes, but it is possible to prepare films of predominantly hexagonal symmetry (the coexistence of the 4H and 2H hexagonal phases, which are close in properties, is also possible). It thus has been demonstrated that the silicon carbide films grown on silicon by solid-state epitaxy are promising for application as damping layers in fabrication of wide-band-gap hexagonal semiconductors on silicon substrates.  相似文献   

19.
表面改性碳化硅基底反射镜加工技术现状   总被引:4,自引:0,他引:4  
康健  宣斌  谢京江 《中国光学》2013,(6):824-833
针对表面改性SiC基底反射镜在空间光学系统中的应用,总结了该类反射镜在国内外的研究现状。概括了碳化硅基底反射镜的发展趋势。介绍了常用的碳化硅材料,分析了它们的性质。给出了几种常用的碳化硅镜坯制备工艺,包括成型、改性和不同的抛光技术。通过对国内现有加工工艺和改性技术的分析,总结出了适应我国的表面改性碳化硅反射镜加工的发展方向。  相似文献   

20.
The concentrations of clusters of various size in the atmosphere during silicon carbide crystal growth have been calculated on the basis of fundamental ideas of homogeneous nucleation theory, taking into account the specific parameters of silicon carbide. It has been shown that the cluster concentration are sufficiently high to conclude that this is the dominant influence during the initial stages of crystal growth. In this way the assumption of the polymer theory of polytypism, namely that the polytype properties of silicon carbide can be determined from the composition of the gas phase, containing sufficiently large clusters with various polytype structures, has been confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号