首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathematical modeling is used for experiments involving the loading of plates by plane shock waves to study the relaxation of shear stresses during the high-rate deformation of metallic materials. It is established that the characteristic relaxation times vary broadly — from fractions of a nanosecond to several microseconds. Such variation is indicative of a change in the mechanism responsible for relaxation. As a result, there is a difference between the quasi-equilibrium shear stresses in the elastic precursor and the same stresses behind the shock front. Metallic materials remain capable of resisting plastic deformation behind the front. Structural irregularities created by high-rate deformation result in localization of plastic flow at the microscopic level, which in turn causes the parameters of the stress-strain state at this level to differ from the corresponding parameters on the macroscopic scale.Siberian Physico-Technical Institute, affiliated with Tomsk University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 82–90, August, 1995.  相似文献   

2.
The effect of plastic flow localization, which is significant for obtaining ultra-fine-grain metals by intense high-rate plastic straining, is studied numerically. Large-scale localization of plastic flow, which is determined by the geometry of the problem, as well as microscopic localization appearing due to instability of plastic strain during the passage of a shock wave through the material, is detected. This effect is proposed for explaining the formation of nanocrystal-size grains obtained in experiments on dynamic channel-angular pressing.  相似文献   

3.
The theory of structural transformations in the planar sybsystem (surface layers and internal interfaces) of solids under plastic deformation is developed. The theory is based on a consideration for local curvature of the crystal lattice, with new structural states arising in its interstices, responsible for plastic distortion. To satisfy the superplastic condition, such high-rate mechanisms should develop in both planar and 3D crystal subsystems. In a translation-invariant crystal, this condition is met by concentration fluctuations. The multiscale criterion of superplasticity is formulated based on the scale invariance of plastic deformation of the planar and crystal subsystems in a deformable solid. Beyond the criterion, superplasticity passes to the creep mode with restricted plasticity of the material.  相似文献   

4.
The effects related to a uniform and localized deformation and dispersed structures formed in copper, brass, and bronze by three methods of pulse loading (converging shock waves and a flow of powder particles accelerated by an explosion and dynamic high-rate pressing) are analyzed.  相似文献   

5.
The paper reports on research in the deformation and fragmentation mechanisms of coarse- and fine-grained materials under high-rate loading. The study was performed by an experimental procedure based on collapse of thick-walled hollow cylinders and by molecular dynamics simulation. The key issue was to study the formation of plastic strain localization bands. It is found that the pattern of plastic deformation is governed by loading conditions and characteristic grain sizes. For a coarse-grained material, the governing mechanism is dislocation deformation resulting in localization bands. For a fine-grained material, the governing mechanism is grain boundary sliding with attendant fragmentation of the material. A dependence of the strain rate and degree on the critical grain size was disclosed. The computer simulation revealed mechanisms of grain boundary sliding on the scales studied.  相似文献   

6.
马文  祝文军  陈开果  经福谦 《物理学报》2011,60(1):16107-016107
用分子动力学方法研究了纳米多晶铝在冲击加载下的冲击波阵面结构及塑性变形机理.模拟研究结果表明:在弹性先驱波之后,是晶界间滑移和变形主导了前期的塑性变形机理;然后是不全位错在界面上成核和向晶粒内传播,然后在晶粒内形成堆垛层错、孪晶和全位错的过程主导了后期的塑性变形机理.冲击波阵面扫过之后留下的结构特征是堆垛层错和孪晶留在晶粒内,大部分全位错则湮灭于对面晶界.这个由两阶段塑性变形过程导致的时序性塑性波阵面结构是过去未见报道过的. 关键词: 晶界 塑性变形 冲击波阵面 分子动力学  相似文献   

7.
In the first part of the work, we described our concept of shock wave processes, which is based on nonlocal nonequilibrium transport theory, and an associated mathematical elastoplastic wave model that allows for inertial properties, structural changes, and variation in mechanical properties of solid-state materials under shock loading. In the second part of the work, it is demonstrated that the energy exchange between the scales of dynamic deformation is defined by the relation between the characteristics measurable in real time: the mesoscale mass velocity variation and the mass velocity defect due to loss of the energy expended in structure formation. An internal criterion is found for the transition of a dynamically deformed material to structural instability.  相似文献   

8.
The evolution of an elastoplastic waves of shock compression in VT1-0 titanium in the as-annealed state and after preliminary compression is measured. A preliminary strain of 0.6% and the related increase in the dislocation density are found to change the deformation kinetics radically and to decrease the Hugoniot elastic limit. An increase in the preliminary strain from 0.6% to 5.2% only weakly changes the Hugoniot elastic limit and the compression rate in the plastic shock wave. The measurement results are used to plot the strain rate versus the stress at the initial stage of high-rate deformation, and the experimental results are interpreted in terms of dislocation dynamics.  相似文献   

9.
The effect of preliminary strain hardening of VT1-0 titanium and a Ti-6 wt % Al-4 wt % V alloy on their mechanical properties under quasi-static and high-rate (τ;105 s?1) loading is studied. Preliminary hardening is accomplished using equal-channel angular pressing (which results in a significant decrease in the grain size and a twofold increase in the quasi-static yield strength) and shock waves. High-rate deformation is attained via shock-wave loading of samples. The experimental results show that structural defects weaken the dependence of the yield strength on the strain rate. The difference in the rate dependences can be so high that the effect of these defects on the flow stress can change sign when going from quasi-static to high-rate loading.  相似文献   

10.
潘昊  王升涛  吴子辉  胡晓棉 《物理学报》2018,67(16):164601-164601
在高压、高应变率加载条件下,孪晶变形对材料的塑性变形具有重要的贡献,而目前孪晶对金属材料的动态屈服强度、冲击响应等的影响还没有被充分揭示.为此,本文考虑孪晶变形和晶粒碎化,针对铍(Be)材料在高应变率加载下的动态力学响应发展了含孪晶的热弹-黏塑性晶体塑性模型.经过和实验结果的对比,发现该模型可以更准确地预测Be材料在动态加载下,尤其是高压动态加载下的屈服强度.进一步,基于该塑性模型研究了Be材料在冲击加载下的准弹性卸载行为,结果表明剪切波速随着压力和剪应变的变化而发生变化是材料产生准弹性卸载现象的主要原因.此外,研究了冲击波卸载过程中Be材料孪晶的演化过程,发现Be材料卸载过程中也伴随着孪晶的产生.  相似文献   

11.
The phase and structural states of titanium spheres loaded by spherical converging shock waves of various intensities were studied layer by layer by means of X-ray diffraction, optical, and transmission electron microscopy. It was established that defects of different types (twins, dislocations, and adiabatic shear bands) are produced during high-rate deformation occurring in materials under such method of pulsed loading. The amount and distribution of the defects depend on the loading intensity. The presence of the ω-phase is revealed only in the layers near the external surface of the titanium sphere after low-intensity loading.  相似文献   

12.
Based on experimental research in shock loading of solid-state materials it is shown that among the important dynamic characteristics of the process, like spatial-temporal mass velocity profiles of shock waves, are the mass velocity variation, velocity defect, and structural instability threshold recorded in real time. Analysis of these characteristics depending on the strain rate, target thickness, and structural state of material demonstrates that conventional approaches of continuum mechanics fail to provide their adequate interpretation and simulation of shock wave processes. A new concept of shock wave processes in condensed media is proposed. The concept, being based on nonlocal nonequilibrium transport theory, allows describing the transition from elastic to hydrodynamic response of a medium depending on the loading rate and time. A nonstationary elastoplastic wave model is proposed for describing the relaxation of an elastic precursor and formation of a retarded plastic front during the wave propagation in a medium with regard to structural evolution. Analysis of the experimental data shows that the division of stresses and strains into elastic and plastic components is incorrect for shock loading.  相似文献   

13.
 本文用分子动力学方法研究了高应变率下晶体材料的力学行为。在冲击加载下,晶体材料中产生了位错和塑性变形。在强冲击时还可出现相变变化。在讨论应变率变化时,获得了屈服强度随应变率增大而增高的结果。  相似文献   

14.
利用ABAQUS有限元软件进行了单个圆形高斯光斑的激光冲击强化数值模拟,分析材料表面光斑中心区域形成的"残余应力洞"现象,并通过分析材料的动态力学响应特征揭示了"残余应力洞"的形成机制。结果表明:在冲击波加载时,光斑边界处会产生很强的剪切应力,形成向四周传播的表面稀疏波和向材料内部传播的剪切波。当稀疏波同时传播到光斑中心,发生相遇、汇聚,使材料产生急剧的上下位移过程,造成冲击波加载塑性变形后的二次塑性变形。二次塑性变形中形成了较大的剪切塑性应变,并降低了冲击波加载阶段产生的轴向和径向塑性应变,使残余压应力降低,从而形成"残余应力洞"。  相似文献   

15.
Polychromatic synchrotron undulator X‐ray sources are useful for ultrafast single‐crystal diffraction under shock compression. Here, simulations of X‐ray diffraction of shock‐compressed single‐crystal tantalum with realistic undulator sources are reported, based on large‐scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two‐wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission‐mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X‐ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.  相似文献   

16.
A two-level approach has been proposed for describing the plastic deformation under high-rate loading of metals. The characteristics of the motion of dislocations under shear stresses have been investigated at the atomistic level by using the molecular dynamics simulation. The macroscopic motion of a material has been described at the continuum level with the use of the model of continuum mechanics with dislocations, which uses information obtained at the atomistic level on the dislocation dynamics. The proposed approach has been used to study the evolution of the dislocation subsystem under shock-wave loading of an aluminum target. The behavior of the dynamic yield stress with an increase in the temperature has been analyzed. The results of the calculations are in good agreement with experimental data.  相似文献   

17.
殷建伟  潘昊  吴子辉  郝鹏程  段卓平  胡晓棉 《物理学报》2017,66(20):204701-204701
研究了爆轰驱动Cu界面的扰动增长过程,分析了不同初始条件下的扰动增长规律和主要失稳机制.研究结果表明:温度相关的熔化失稳和塑性变形相关的拉伸断裂失稳是界面扰动增长过程的主要失稳机制;高能炸药爆轰驱动Cu材料界面时,冲击波加载引起的温升和扰动增长阶段塑性功转换引起的温升不足以熔化Cu材料,拉伸断裂是导致扰动增长不稳定的主要机制;扰动增长非线性阶段尖钉的最大累积有效塑性应变与尖钉振幅之间存在定标关系,结合熔化条件和断裂应变判据建立的尖钉振幅失稳条件可用于分析界面扰动增长的稳定性.  相似文献   

18.
The plastic deformation and the onset of fracture of single-crystal metals under shock-wave loading have been studied using aluminum as an example by the molecular dynamics method. The mechanisms of plastic deformation under compression in a shock wave and under tension in rarefaction waves have been investigated. The influence of the defect structure formed in the compression wave on the spall strength and the fracture mechanism has been analyzed. The dependence of the spall strength on the strain rate has been obtained.  相似文献   

19.
A statistically based approach is developed for the construction of constitutive equations that provides linkages between defect-induced mechanisms of structural relaxation, thermally activated plastic flow, and material response to extreme loading conditions. The collective properties of defects have been studied to establish the interaction of multiscale defect dynamics and plastic flow, and to explain the mechanisms leading to the universal self-similar structure of shock wave fronts. Pn explanation for structural universality of the steady-state plastic shock front (the four power law) and the self-similarity of shock wave profiles under reloading (unloading) is proposed. Structural characterization under transition from thermally activated dislocation glide to nonlinear dislocation drag effects is developed in terms of scaling invariants (effective temperatures) related to mesodefect induced morphology formed during the different stages of plastic deformation.  相似文献   

20.
Under conditions of high-rate loading, plastic strain localization is a result of tension in the zone of interference of unloading waves rather than of thermal softening. At stresses close to the dynamic strength of the material, the microstructure of localized strain bands consists of strongly deformed material, with a large number of incipient microdiscontinuities. At stresses below the Hugoniot elastic limit, the microstructure looks as a set of barely visible stripes. The finely striped structure at the edges of the bands of a spall damage arises as a result of the stretching of initially rounded damage centers attached to the matrix material during dynamic deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号