首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
用旋转圆盘玻碳电极研究了阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)对氧还原反应的影响. 结果表明, DTAB明显提高了玻碳电极对氧还原的电催化活性. 通过对氧还原电流与旋转速度的关系以及动力学电流与电位的Tafel关系分析, 发现DTAB提高了玻碳电极对氧还原反应电荷传递步骤的传递系数, 因此加快了氧还原的动力学过程.  相似文献   

2.
利用单晶旋转圆盘电极技术(Hanging Meniscus Rotating Disk Electrode, HMRD)在硫酸和高氯酸溶液中分别研究了甘氨酸修饰的Pt(111)电极表面氧分子的电催化还原反应. 实验发现:在硫酸溶液中,经甘氨酸修饰的Pt(111)电极表面的氧还原活性明显提高,其中氧还原的半波电位与Pt(111)电极的相比正移约0.1 V,而在高氯酸溶液中,甘氨酸修饰的Pt(111)电极的活性几乎没有发生变化. 该实验结果表明:甘氨酸修饰的Pt(111)电极一方面抑制了SO42-在电极表面的吸附,另一方面又能在电极表面提供相邻的空位供氧分子吸附. 通过与文献中报道的CN-修饰的Pt(111)电极上的氧还原结果的对比,可以推测甘氨酸修饰的Pt(111)电极表面氧还原活性提高是由于甘氨酸在Pt(111)表面可能先被氧化成CN-后吸附在电极表面,进而促进了氧分子的电催化还原反应.  相似文献   

3.
薄膜旋转圆盘电极方法是一种常用的评价气体物质在纳米电催化剂上的反应活性的方法,但是在数据分析过程中经常忽视了气体反应物在催化剂层中到活性位点的传质可能对估算的反应动力学参数的影响.本文以氧电极反应为例,使用薄膜旋转圆盘电极研究了不同担载量Pt/C电极的氧还原活性.实验结果表明,根据Koutecky-Levich方程求算相同电位下的"表观动力学电流密度"(对Pt活性面积归一化的mA/cm2Pt)或比质量电流(mA/μg Pt)随Pt担载量的减小而增大,说明在估算动力学电流时不能忽略O2在催化剂层中的扩散传质,而气体在催化剂层中的传质与催化剂层的结构、厚度、纳米催化剂的分散度等密切相关.建议在使用薄膜旋转圆盘电极方法来研究纳米催化剂气体电极反应活性时,首先系统考察担载量、分散度与催化剂层厚的影响,然后根据不同担载量催化剂归一化后的动力学电流密度(或比质量电流)-电势曲线是否重合来验证得到的是否是真实的动力学电流,从而得到更为准确的评价结果.  相似文献   

4.
采用阳极氧化铝(AAO)模板法电化学沉积制备了Pt纳米线阵列(Pt NWs)氧还原催化剂, 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学测试对Pt纳米线阵列催化剂的形貌和电催化性能进行了表征. 循环伏安法(CV)研究表明Pt纳米线阵列催化剂的电化学活性面积大于其几何面积; 旋转圆盘电极(RDE)测试研究发现, 制备的Pt纳米线阵列催化剂的氧还原反应(ORR)曲线的半波电势相对Pt/C的有正移, 并且Pt纳米线阵列催化剂的极限扩散电流比Pt/C大.  相似文献   

5.
《电化学》2019,(5)
本文以还原氧化石墨烯(rGO)为载体制备了片状NiO/rGO和球形NiO/N-rGO结构的氧还原催化剂.通过X-射线衍射(XRD)、Raman(拉曼)测试、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等方法表征了两种催化剂的结构和形貌.采用循环伏安法(CV)、Tafel曲线、线性扫描伏安法(LSV)、旋转圆盘电极(RDE)和旋转环盘电极(RRDE)等技术测试研究了两种催化剂的电化学催化氧还原性能.研究结果表明,球形NiO/N-rGO催化剂催化氧还原的峰电流密度和起始电位(0.89 V vs. RHE)与商业化的Pt/C(20%)催化剂相近.旋转圆盘电极(RDE)和旋转环盘电极(RRDE)测试证明,在碱性电解液中NiO/rGO和NiO/N-rGO催化的氧还原反应均主要通过4-电子途径反应途径发生,球形NiO/N-rGO催化剂展现出替代Pt/C基催化剂的潜力.  相似文献   

6.
严祥辉  张贵荣  徐柏庆 《催化学报》2013,34(11):1992-1997
经过热解聚苯胺、碳和FeCl3的混合物制备的Fe-N-C材料在酸性电解质中对氧还原反应表现出高的催化活性;由于材料中不存在任何贵金属, 因而被认为是一类新型非贵金属氧还原催化剂. 然而这类催化剂在碱性电解质中催化氧还原反应的性能如何尚不清楚. 本文使用旋转圆盘电极技术考察了制备的两个Fe-N-C催化剂在KOH水溶液中催化氧还原反应性能, 发现这两个催化剂表现出比无金属的N掺杂碳材料更高的活性. 与商业Pt/C催化剂相比, 它们催化氧还原反应的起始电势和半波电势分别仅低60和40 mV左右, 计时电流测试表明, 它们比Pt/C催化剂显示出更好的稳定性. 此外, 在这两个Fe-N-C催化剂上的氧还原反应主要遵循四电子途径. 本工作显示, Fe-N-C材料有望用于碱性燃料电池氧还原反应催化剂.  相似文献   

7.
罗昪  周芬  潘牧 《高等学校化学学报》2022,43(4):20210853-86
层级多孔碳作为氧还原铂基催化剂载体的选择之一, 简单的旋转圆盘电极(RDE)验证此类催化剂具有较高的氧还原活性, 但几乎都缺少膜电极(MEA)性能验证, 实用性无法保证. 本文设计制备了基于聚苯胺的层级多孔碳(NHPC)载铂催化剂(Pt/NHPC850), 研究了其氧还原活性、 MEA质子传输和氧传输特性. RDE测试研究表明, Pt/NHPC850催化剂在低I/C(离聚物与碳载体质量比)时的面积活性低于实心碳载铂催化剂(Pt/XC-72), 但当I/C增大到与膜电极中一致时, 由于Nafion树脂对Pt催化剂的毒化作用增强, 其面积活性反而优于 Pt/XC-72. Pt/NHPC850催化剂的高Pt分散性及其优异的抗Nafion毒化性能, 使其在I/C为0.8时的质量活性为Pt/XC-72催化剂的1.34倍. MEA质子传输研究表明, 即使在高加湿条件下, Pt/NHPC850质子电阻率仍高达72.6 mΩ·cm2, 为Pt/XC-72的3倍. Pt/NHPC850制备的膜电极极化曲线在500 mA/cm2电流密度下性能迅速下降, Pt/NHPC850的氧增益电压达到144.4 mV, 比Pt/XC-72高56.7 mV. 表明Pt/NHPC850膜电极的质子传输和氧传输性能较差. 对比Pt/NHPC850催化剂的RDE和MEA的测试结果, 说明以层级多孔碳为载体的铂碳催化剂虽然耐Nafion毒化能力提高, 但是质子和氧气的氧传输性较差, 此类层级多孔碳还需进一步优化其结构, 才有可能满足低铂质子交换膜燃料电池(PEMFC)的应用需求.  相似文献   

8.
本文以还原氧化石墨烯(rGO)为载体制备了片状NiO/rGO和球形NiO/N-rGO结构的氧还原催化剂. 通过X-射线衍射(XRD)、Raman(拉曼)测试、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等方法表征了两种催化剂的结构和形貌. 采用循环伏安法(CV)、Tafel曲线、线性扫描伏安法(LSV)、旋转圆盘电极(RDE)和旋转环盘电极(RRDE)等技术测试研究了两种催化剂的电化学催化氧还原性能. 研究结果表明,球形NiO/N-rGO催化剂催化氧还原的峰电流密度和起始电位(0.89 V vs. RHE)与商业化的Pt/C(20%)催化剂相近. 旋转圆盘电极(RDE)和旋转环盘电极(RRDE)测试证明,在碱性电解液中NiO/rGO和NiO/N-rGO催化的氧还原反应均主要通过4?鄄电子途径反应途径发生,球形NiO/N-rGO催化剂展现出替代Pt/C基催化剂的潜力.  相似文献   

9.
采用间歇式微波法制备了不同Pt、Ni原子比的碳载Pt-Ni催化剂。XRD结果表明,用这种方法制备的催化剂分散得比较好,具有较小的平均粒径,其中Pt-Ni/C(3∶1)催化剂的粒径最小。在旋转圆盘电极上进行氧的还原测试结果表明,当电解质溶液中没有甲醇和有甲醇存在时,Pt-Ni/C(3∶1)催化剂对氧的催化还原活性都很高,说明Pt-Ni/C(3∶1)催化剂对氧的催化还原受甲醇的影响较小。  相似文献   

10.
本实验利用铜的欠电位沉积技术,在旋转圆盘电极上以碳负载的钯纳米颗粒为核,制备铂单原子层核壳结构催化剂. 电化学测试用于表征不同Nafion含量的添加对于核壳结构催化剂制备的影响. 实验证明,Nafion的存在会影响铜的欠电位沉积,铂与铜的置换反应,并决定最终制备的核壳结构催化剂的氧还原催化反应的活性. 当催化剂薄层中Nafion的含量低于5%的时候,添加Nafion不但可以帮助催化剂附着在旋转圆盘电极表面,而且可以保证制备的催化剂具有较好的氧还原反应催化活性. 在H2SO4溶液中,钯纳米颗粒的表面存在特殊的阴离子吸/脱附电化学信号峰,这些信号峰可以用来监测Nafion含量对于铂单原子层核壳结构催化剂制备的影响.  相似文献   

11.
本文报导了一种H2Pc-Pt/C纳米复合物电化学催化剂,采用TEM、XRD、ICP对其组成与结构进行了表征. 在含有0.5 M甲醇的硫酸溶液中,H2Pc-Pt/C-Nafion?催化电极催化氧还原反应的起始电位比由商购Pt/C-JM与Nafion?制备的Pt/C-JM-Nafion?催化电极提高了200 mV,其催化氧还原反应的比活性是Pt/C-JM-Nafion?催化电极的7倍,表明其具有优良的耐醇性和对氧还原反应的高催化活性及良好的选择性. 不同于FePc,H2Pc与Nafion?在乙醇中不能形成可溶性配合物,H2Pc-Pt/C-Nafion?催化电极的耐醇性主要得益于H2Pc微晶的覆盖作用和H2Pc微晶/Pt边界上活性位点对氧还原反应的高催化活性及良好的选择性.  相似文献   

12.
Hydrogen molybdenum bronze (HxMoO3) can be electrodeposited on platinum and oxidized in two steps to the hydrogen molybdenum bronze with less amount of hydrogen HyMoO3 (y相似文献   

13.
李恒  孔令斌  张晶  王儒涛  罗永春  康龙 《应用化学》2010,27(9):1065-1070
采用直接电化学还原法在介孔碳(CMK-3)载体上直接电沉积高分散的铂纳米颗粒,制备CMK-3复合铂纳米颗粒电极(Pt/CMK-3)。 通过透射电子显微镜分析发现,铂纳米颗粒非常均匀的分布在CMK-3上,平均粒径约5 nm。 通过循环伏安测试,分析了催化剂不同负载铂含量时氯铂酸的利用率,在理论铂质量分数为20%时,这种方法制备的Pt/CMK-3所使用的氯铂酸的利用率最高,在1 mol/L CH3OH+0.5 mol/L H2SO4溶液中循环伏安测试电流密度达到382 A/g。 在相同实验条件下,Pt/CMK-3电极对甲醇电催化活性远高于Pt/XC-72(炭黑)电极和用常规电沉积方法制备的Pt/CMK-3电极。  相似文献   

14.
Pt(m)^Ag nanostructures (m being the atomic Pt/Ag ratio, m = 0.1-0.6) were prepared by reflux citrate reduction of PtCl(6)(2-) ions in aqueous solution containing colloidal Ag (6.3 ± 3.9 nm). A distinct alloying of Pt with Ag was detected due to an involvement of the galvanic replacement reaction between PtCl(6)(2-) and metallic Ag colloids. The nanostructure transformed from a structure with an Ag-core and an alloyed PtAg-shell to a hollow PtAg alloy structure with the increase in m. Compared to a commercial E-TEK Pt/C catalyst, the catalytic performance of Pt in the Pt(m)^Ag/C samples for the cathode oxygen reduction reaction (ORR) strongly correlated with the electronic structure of Pt, as a consequence of varied Pt dispersion and Pt-Ag interaction. With either H(2)SO(4) or KOH as an electrolyte, Pt in the Pt(m)^Ag nanostructures with a relatively high m (≥0.4) showed significantly enhanced intrinsic activity whereas Pt in those catalysts with low m (≤0.2) appeared less active than the Pt/C catalyst. These data are used to discuss the role of electronic structure and geometric effects of Pt toward ORR.  相似文献   

15.
This paper studies the electrochemical properties of ppy/Pt‐Cu composite for oxygen reduction reaction (ORR) and compares it to the highly porous ppy/Pt‐Cu catalyst, which can be synthesized by galvanostatic method (ppy/Pt‐Cu(GS)). The results of the polarization, rotating disk electrode and electrochemical impedance tests are discussed to determine the electrochemical properties of the catalysts. According to the results, ppy/Pt‐Cu(GS) catalyst is more active toward ORR compared to ppy/Pt‐Cu catalyst. The rotating disk electrode data indicates four‐electron transfer mechanism for this catalyst.  相似文献   

16.
Electro-oxidation of methanol was studied on titanium supported nanocrystallite Pt and Ptx-Sny catalysts prepared by electrodeposition techniques. Their electro-catalytic activities were studied in 0.5mol/L H2SO4 and compared to those of a smooth Pt, Pt/Pt and Pt-Sn/Pt electrodes. Platinum was deposited on Ti by galvanostatic and potentiostatic techniques. X-ray diffractometer (XRD) and energy dispersive X-ray (EDX) techniques were applied in order to investigate the chemical composition and the phase structure of the modified electrodes. Scanning electron microscopy (SEM) was used to characterize the surface morphology and to correlate the results obtained from the two electrochemical deposition methods. Results show that modified Pt/Ti electrodes prepared by the two methods have comparable performance and enhanced catalytic activity towards methanol electro-oxidation compared to Pt/Pt and smooth Pt electrodes. Steady state Tafel plots experiments show a higher rate of methanol oxidation on a Pt/Ti catalyst than that on a smooth Pt.  Introduction of a small amount of Sn deposited with Pt improves the catalytic activity and the stability of prepared electrode with time as indicated from the cyclic votlammetry and the chronoamperometric experiments. The effect of variations in the composition for binary catalysts of the type Ptx-Sny/Ti towards the methanol oxidation reaction is reported. Consequently, the Ptx-Sny/Ti (x∶y (8∶1), molar ratio) catalyst is a very promising one for methanol oxidation.  相似文献   

17.
RuxCoySez纳米簇合物对阴极氧还原反应的催化性能   总被引:1,自引:0,他引:1  
以Ru3(CO)12、Co4(CO)12和Se为原料,采用低温回流技术在1,6-己二醇中合成了RuxCoySez纳米簇合物.利用SEM和XRD测试表征了催化剂的微观形貌和相结构,催化剂粉末以六方结构的Rux簇为主相,同时形成无定形相,呈现高度均匀聚集的纳米颗粒.利用旋转圆盘电极研究了催化剂对氧还原反应电催化活性.在0.5molL-1H2SO4溶液中,RuxCoySez催化剂对氧还原的催化活性和电化学稳定性明显高于RuxSey,开路电位达到0.91V(vs.NHE).  相似文献   

18.
通过循环伏安法电沉积使直径约为7 nm的Pt纳米粒子均匀地分散于多孔硅表面, 拟用作微型质子交换膜燃料电池的催化电极. 与刷涂法相比较, 电沉积Pt纳米粒子的多孔硅电极(Pt/Si)呈现出高的Pt利用率和增强的电催化活性. 当Pt载量为0.38 mg•cm−2时, 其电化学活性比表面积高达148 cm2•mg−1, 是刷涂相近质量的纳米Pt/C催化剂的多孔硅电极Pt-C/Si的2倍多;该修饰电极对甲醇氧化也呈现了增强的催化性能和好的稳定性, 在0.5 V(vs SCE)极化1 h后电流密度为4.52 mA•cm−2, 而刷涂了相近Pt量的Pt-C/Si电极的电流密度只有0.36 mA•cm−2.  相似文献   

19.
蒋太祥  吴辉煌 《电化学》2002,8(4):376-380
用SNIFTIRS和循环伏安法研究次亚磷酸根离子在多晶铂电极上的电氧化机理 .分析了0 .5mol/LH2 SO4 + 0 .1mol/LNaH2 PO2 溶液中原位红外反射谱图与Pt电极电位的关系 ,发现次亚磷酸根离子在Pt上发生解离吸附 ,其氧化产物是H3 PO4 ,不同于在Ni上的氧化产物H2 PO- 3 ,据此提出了酸性溶液中次亚磷酸根离子在Pt上氧化机理的新看法  相似文献   

20.
《中国化学快报》2020,31(6):1540-1544
Although platinum-based materials are regarded as the state-of-the-art electro-catalysts for hydrogen evolution reaction(HER),high cost and quantity scarcity hamper their scale-up utilization in industrial deployment.Herein,a one-step strategy was developed to synthesize multi-walled carbon nanotubes and reduced graphene oxide supported Pt nanoparticle hydrogel(PtNP/rGO-MWCNT),in which only ascorbic acid was used as the reductant for one-pot reduction of both GO and chloroplatinic acid.The hydrogel can be directly used as a flexible binder-free catalytic electrode to achieve high performance of HER.Compared to conventional strategies,the current strategy not only significantly reduces the Pt loading to 3.48 wt%,simplifies the synthesis process,but also eliminates the use of any polymer binders,thus decreasing the series resistance and improving catalytic activity.An overpotential of only 11 mV was achieved on as-prepared PtNP/rGO-MWCNT to drive a geometrical current density of 10 mA/cm2 in0.5 mol/L H2 SO4,with its catalytic activity being kept over 15 h.In acidic medium,the HER activity of the PtNP/rGO-MWCNT catalyst exceeds most of the reported Pt-based electro-catalysts and is 3-fold higher than that obtained on commercial Pt/C electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号