首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A least-squares spectral collocation scheme is combined with the overlapping Schwarz method. The methods are succesfully applied to the incompressible Navier–Stokes equations. The collocation conditions and the interface conditions lead to an overdetermined system which can be efficiently solved by least-squares. The solution technique will only involve symmetric positive definite linear systems. The overlapping Schwarz method is used for the iterative solution. For parallel implementation the subproblems are solved in a checkerboard manner. Our approach is successfully applied to the lid-driven cavity flow problem. Only a few Schwarz iterations are necessary in each time step. Numerical simulations confirm the high accuracy of our spectral least-squares scheme.  相似文献   

2.
Chebyshev polynomials of the first kind are employed in a space–time least-squares spectral element formulation applied to linear and nonlinear hyperbolic scalar equations. No stabilization techniques are required to render a stable, high order accurate scheme. In parts of the domain where the underlying exact solution is smooth, the scheme exhibits exponential convergence with polynomial enrichment, whereas in parts of the domain where the underlying exact solution contains discontinuities the solution displays a Gibbs-like behavior. An edge detection method is employed to determine the position of the discontinuity. Piecewise reconstruction of the numerical solution retrieves a monotone solution. Numerical results will be given in which the capabilities of the space–time formulation to capture discontinuities will be demonstrated.  相似文献   

3.
Chebyshev polynomials of the first kind are employed in a space-time least-squares spectral element formulation applied to linear and nonlinear hyperbolic scalar equations. No stabilization techniques are required to render a stable, high order accurate scheme. In parts of the domain where the underlying exact solution is smooth, the scheme exhibits exponential convergence with polynomial enrichment, whereas in parts of the domain where the underlying exact solution contains discontinuities the solution displays a Gibbs-like behavior. An edge detection method is employed to determine the position of the discontinuity. Piecewise reconstruction of the numerical solution retrieves a monotone solution. Numerical results will be given in which the capabilities of the space-time formulation to capture discontinuities will be demonstrated.  相似文献   

4.
5.
We present a class of orthogonal functions on infinite domain based on Jacobi polynomials. These functions are generated by applying a tanh transformation to Jacobi polynomials. We construct interpolation and projection error estimates using weighted pseudo-derivatives tailored to the involved mapping. Then, using the nodes of the newly introduced tanh Jacobi functions, we develop an efficient spectral tanh Jacobi collocation method for the numerical simulation of nonlinear Schrödinger equations on the infinite domain without using artificial boundary conditions. The applicability and accuracy of the solution method are demonstrated by two numerical examples for solving the nonlinear Schrödinger equation and the nonlinear Ginzburg–Landau equation.  相似文献   

6.
We propose a spectral collocation method for the numerical solution of the time‐dependent Schrödinger equation, where the newly developed nonpolynomial functions in a previous study are used as basis functions. Equipped with the new basis functions, various boundary conditions can be imposed exactly. The preferable semi‐implicit time marching schemes are employed for temporal discretization. Moreover, the new basis functions build in a free parameter λ intrinsically, which can be chosen properly so that the semi‐implicit scheme collapses to an explicit scheme. The method is further applied to linear Schrödinger equation set in unbounded domain. The transparent boundary conditions are constructed for time semidiscrete scheme of the linear Schrödinger equation. We employ spectral collocation method using the new basis functions for the spatial discretization, which allows for the exact imposition of the transparent boundary conditions. Comprehensive numerical tests both in bounded and unbounded domain are performed to demonstrate the attractive features of the proposed method.  相似文献   

7.
古振东  孙丽英 《计算数学》2017,39(4):351-362
本文考察了一类弱奇性积分微分方程的级数展开数值解法,并给出了相应的收敛性分析.理论分析结果表明,若用已知函数的谱配置多项式逼近已知函数,那么方程的数值解以谱精度逼近方程的真解.数值实验数据也验证了这一理论分析结果.  相似文献   

8.
We consider the wave equation on an interval of length 1 with an interior damping at ξ. It is well-known that this system is well-posed in the energy space and that its natural energy is dissipative. Moreover, as it was proved in Ammari et al. (Asymptot Anal 28(3–4):215–240, 2001), the exponential decay property of its solution is equivalent to an observability estimate for the corresponding conservative system. In this case, the observability estimate holds if and only if ξ is a rational number with an irreducible fraction x = \fracpq,\xi=\frac{p}{q}, where p is odd, and therefore under this condition, this system is exponentially stable in the energy space. In this work, we are interested in the finite difference space semi-discretization of the above system. As for other problems (Zuazua, SIAM Rev 47(2):197–243, 2005; Tcheugoué Tébou and Zuazua, Adv Comput Math 26:337–365, 2007), we can expect that the exponential decay of this scheme does not hold in general due to high frequency spurious modes. We first show that this is indeed the case. Secondly we show that a filtering of high frequency modes allows to restore a quasi exponential decay of the discrete energy. This last result is based on a uniform interior observability estimate for filtered solutions of the corresponding conservative semi-discrete system.  相似文献   

9.
In this study, we use the spectral collocation method using Chebyshev polynomials for spatial derivatives and fourth order Runge–Kutta method for time integration to solve the generalized Burger’s–Huxley equation (GBHE). To reduce round-off error in spectral collocation (pseudospectral) method we use preconditioning. Firstly, theory of application of Chebyshev spectral collocation method with preconditioning (CSCMP) and domain decomposition on the generalized Burger’s–Huxley equation presented. This method yields a system of ordinary differential algebric equations (DAEs). Secondly, we use fourth order Runge–Kutta formula for the numerical integration of the system of DAEs. The numerical results obtained by this way have been compared with the exact solution to show the efficiency of the method.  相似文献   

10.
In this study, we use the spectral collocation method using Chebyshev polynomials for spatial derivatives and fourth order Runge–Kutta method for time integration to solve the generalized Burger’s–Fisher equation (B–F). Firstly, theory of application of Chebyshev spectral collocation method (CSCM) and domain decomposition on the generalized Burger’s–Fisher equation is presented. This method yields a system of ordinary differential algebraic equations (DAEs). Secondly, we use fourth order Runge–Kutta formula for the numerical integration of the system of DAEs. The numerical results obtained by this way have been compared with the exact solution to show the efficiency of the method.  相似文献   

11.
In this paper, we propose two efficient numerical integration processes for initial value problems of ordinary differential equations. The first algorithm is the Legendre–Gauss collocation method, which is easy to be implemented and possesses the spectral accuracy. The second algorithm is a mixture of the collocation method coupled with domain decomposition, which can be regarded as a specific implicit Legendre–Gauss Runge–Kutta method, with the global convergence and the spectral accuracy. Numerical results demonstrate the spectral accuracy of these approaches and coincide well with theoretical analysis.   相似文献   

12.
We combine a high-order compact finite difference scheme to approximate the spatial derivatives and collocation techniques for the time component to numerically solve the two-dimensional heat equation. We use two approaches to implement the time collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadratures. We also implement a spatial collocation method where differential quadratures are utilized for spatial derivatives and an implicit scheme for marching in time. We compare all the three techniques by studying their merits and analyzing their numerical performance. Our experiments show that all of them achieve high-accurate approximate solution but the time collocation method with differential quadrature offers (with respect to the one with explicit polynomials) less computational complexity and a better efficiency. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.  相似文献   

13.
An important capability for a subdivision scheme is the reproducing property of circular shapes or parts of conics that are important analytical shapes in geometrical modeling. In this regards, this study first provides necessary and sufficient conditions for a non-stationary subdivision to have the reproducing property of exponential polynomials. Then, the approximation order of such non-stationary schemes is discussed to quantify their approximation power. Based on these results, we see that the exponential B-spline generates exponential polynomials in the associated spaces, but it may not reproduce any exponential polynomials. Thus, we present normalized exponential B-splines that reproduce certain sets of exponential polynomials. One interesting feature is that the set of exponential polynomials to be reproduced is varied depending on the normalization factor. This provides us with the necessary accuracy and flexibility in designing target curves and surfaces. Some numerical results are presented to support the advantages of the normalized scheme by comparing them to the results without normalization.  相似文献   

14.
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and depends on a finite number of random variables. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. This approach leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. We consider both full and sparse tensor product spaces of orthogonal polynomials. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points for full and sparse tensor product spaces and under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems, the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence may only be algebraic. An exponential/fast rate of convergence is still possible for some quantities of interest and for the wave solution with particular types of data. We present numerical examples, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo method for this class of problems.  相似文献   

15.
In this paper we consider random block matrices, which generalize the general beta ensembles recently investigated by Dumitriu and Edelmann (J. Math. Phys. 43:5830–5847, 2002; Ann. Inst. Poincaré Probab. Stat. 41:1083–1099, 2005). We demonstrate that the eigenvalues of these random matrices can be uniformly approximated by roots of matrix orthogonal polynomials which were investigated independently from the random matrix literature. As a consequence, we derive the asymptotic spectral distribution of these matrices. The limit distribution has a density which can be represented as the trace of an integral of densities of matrix measures corresponding to the Chebyshev matrix polynomials of the first kind. Our results establish a new relation between the theory of random block matrices and the field of matrix orthogonal polynomials, which have not been explored so far in the literature.  相似文献   

16.
It is well known that, spectrally accurate solution can be maintained if the grids on which a nonlinear physical problem is to be solved must be obtained by spectrally accurate techniques. In this paper, the pseudospectral Legendre method for general nonlinear smooth and nonsmooth constrained problems of the calculus of variations is studied. The technique is based on spectral collocation methods in which the trajectory, x(t), is approximated by the Nth degree interpolating polynomial, using Legendre-Gauss-Lobatto points as the collocation points, and Lagrange polynomials as trial functions. The integral involved in the formulation of the problem is approximated based on Legendre-Gauss-Lobatto integration rule, thereby reducing the problem to a nonlinear programming one to which existing well-developed algorithms may be applied. The method is easy to implement and yields very accurate results. Illustrative examples are included to confirm the convergence of the pseudospectral Legendre method. Moreover, a numerical experiment (on a nonsmooth problem) indicates that by applying a smoothing filter procedure to the pseudospectral Legendre approximation, one can recover the nonsmooth solution within spectral accuracy.  相似文献   

17.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

18.
In this paper we propose and analyze fractional spectral methods for a class of integro-differential equations and fractional differential equations. The proposed methods make new use of the classical fractional polynomials, also known as Müntz polynomials. We first develop a kind of fractional Jacobi polynomials as the approximating space, and derive basic approximation results for some weighted projection operators defined in suitable weighted Sobolev spaces. We then construct efficient fractional spectral methods for some integro-differential equations which can achieve spectral accuracy for solutions with limited regularity. The main novelty of the proposed methods is that the exponential convergence can be attained for any solution u(x) with u(x 1/λ ) being smooth, where λ is a real number between 0 and 1 and it is supposed that the problem is defined in the interval (0,1). This covers a large number of problems, including integro-differential equations with weakly singular kernels, fractional differential equations, and so on. A detailed convergence analysis is carried out, and several error estimates are established. Finally a series of numerical examples are provided to verify the efficiency of the methods.  相似文献   

19.
It has been shown in Ferreira et al. (Adv. Appl. Math 31:61–85, [2003]), López and Temme (Methods Appl. Anal. 6:131–196, [1999]; J. Cpmput. Appl. Math. 133:623–633, [2001]) that the three lower levels of the Askey table of hypergeometric orthogonal polynomials are connected by means of asymptotic expansions. In this paper we continue with that investigation and establish asymptotic connections between the fourth level and the two lower levels: we derive twelve asymptotic expansions of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of Hermite, Charlier and Laguerre polynomials. From these expansions, several limits between polynomials are derived. Some numerical experiments give an idea about the accuracy of the approximations and, in particular, about the accuracy in the approximation of the zeros of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of the zeros of the Hermite, Charlier and Laguerre polynomials.   相似文献   

20.
In Zhang et al. (accepted by SIAM J. Optim., 2010), we developed a class of derivative-free algorithms, called DFLS, for least-squares minimization. Global convergence of the algorithm as well as its excellent numerical performance within a limited computational budget was established and discussed in the same paper. Here we would like to establish the local quadratic convergence of the algorithm for zero residual problems. Asymptotic convergence performance of the algorithm for both zero and nonzero problems is tested. Our numerical experiments indicate that the algorithm is also very promising for achieving high accuracy solutions compared with software packages that do not exploit the special structure of the least-squares problem or that use finite differences to approximate the gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号