首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas such as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous and the 0-1 variables. We use an alternative approach, in which we keep in the model only the continuous variables, and we enforce the cardinality constraint through a specialized branching scheme and the use of strong inequalities valid for the convex hull of the feasible set in the space of the continuous variables. To derive the valid inequalities, we extend the concepts of cover and cover inequality, commonly used in 0-1 programming, to this class of problems, and we show how cover inequalities can be lifted to derive facet-defining inequalities. We present three families of non-trivial facet-defining inequalities that are lifted cover inequalities. Finally, we report computational results that demonstrate the effectiveness of lifted cover inequalities and the superiority of the approach of not introducing auxiliary 0-1 variables over the traditional MIP approach for this class of problems. Received: March 13, 2003 Published online: April 10, 2003 Key Words. mixed-integer programming – knapsack problem – cardinality constrained programming – branch-and-cut  相似文献   

2.
In this paper, we consider the Capacitated Network Design (CND) problem. We investigate the relationship between CND and the Bin-Packing problem. This is exploited for identifying new classes of valid inequalities for the CND problem and developing a branch-and-cut algorithm to solve it efficiently.  相似文献   

3.
4.
We consider the resource-constrained scheduling problem when each job’s resource requirements remain constant over its processing time. We study a time-indexed formulation of the problem, providing facet-defining inequalities for a projection of the resulting polyhedron that exploit the resource limitations inherent in the problem. Lifting procedures are then provided for obtaining strong valid inequalities for the original polyhedron. Computational results are presented to demonstrate the strength of these inequalities.  相似文献   

5.
The General Routing Problem (GRP) consists of finding a minimum length closed walk in an edge-weighted undirected graph, subject to containing certain sets of required nodes and edges. It is related to the Rural Postman Problem and the Graphical Traveling Salesman Problem.We examine the 0/1-polytope associated with the GRP introduced by Ghiani and Laporte [A branch-and-cut algorithm for the Undirected Rural Postman Problem, Math. Program. Ser. A 87 (3) (2000) 467-481]. We show that whenever it is not full-dimensional, the set of equations and facets can be characterized, and the polytope is isomorphic to the full-dimensional polytope associated with another GRP instance which can be obtained in polynomial time. We also offer a node-lifting method. Both results are applied to prove the facet-defining property of some classes of valid inequalities. As a tool, we study more general polyhedra associated to the GRP.  相似文献   

6.
We consider the vertex-weighted version of the undirected Steiner tree problem. In this problem, a cost is incurred both for the vertices and the edges present in the Steiner tree. We completely describe the associated polytope by linear inequalities when the underlying graph is series—parallel. For general graphs, this formulation can be interpreted as a (partial) extended formulation for the Steiner tree problem. By projecting this formulation, we obtain some very large classes of facet-defining valid inequalities for the Steiner tree polytope.Research supported by Air Force contract AFOSR-89-0271 and DARPA contract DARPA-89-5-1988.  相似文献   

7.
8.
In recent years, branch-and-cut algorithms have become firmly established as the most effective method for solving generic mixed integer linear programs (MILPs). Methods for automatically generating inequalities valid for the convex hull of solutions to such MILPs are a critical element of branch-and-cut. This paper examines the nature of the so-called separation problem, which is that of generating a valid inequality violated by a given real vector, usually arising as the solution to a relaxation of the original problem. We show that the problem of generating a maximally violated valid inequality often has a natural interpretation as a bilevel program. In some cases, this bilevel program can be easily reformulated as a simple single-level mathematical program, yielding a standard mathematical programming formulation for the separation problem. In other cases, no such polynomial-size single-level reformulation exists unless the polynomial hierarchy collapses to its first level (an event considered extremely unlikely in computational complexity theory). We illustrate our insights by considering the separation problem for two well-known classes of valid inequalities.  相似文献   

9.
We consider a network design problem that arises in the cost-optimal design of last mile telecommunication networks. It extends the Connected Facility Location problem by introducing capacities on the facilities and links of the networks. It combines aspects of the capacitated network design problem and the single-source capacitated facility location problem. We refer to it as the Capacitated Connected Facility Location Problem. We develop a basic integer programming model based on single-commodity flows. Based on valid inequalities for the capacitated network design problem and the single-source capacitated facility location problem we derive several (new) classes of valid inequalities for the Capacitated Connected Facility Location Problem including cut set inequalities, cover inequalities and combinations thereof. We use them in a branch-and-cut framework and show their applicability and efficacy on a set of real-world instances.  相似文献   

10.
The Delay Constrained Relay Node Placement Problem (DCRNPP) frequently arises in the Wireless Sensor Network (WSN) design. In WSN, Sensor Nodes are placed across a target geographical region to detect relevant signals. These signals are communicated to a central location, known as the Base Station, for further processing. The DCRNPP aims to place the minimum number of additional Relay Nodes at a subset of Candidate Relay Node locations in such a manner that signals from various Sensor Nodes can be communicated to the Base Station within a pre-specified delay bound. In this paper, we study the structure of the projection polyhedron of the problem and develop valid inequalities in form of the node-cut inequalities. We also derive conditions under which these inequalities are facet defining for the projection polyhedron. We formulate a branch-and-cut algorithm, based upon the projection formulation, to solve DCRNPP optimally. A Lagrangian relaxation based heuristic is used to generate a good initial solution for the problem that is used as an initial incumbent solution in the branch-and-cut approach. Computational results are reported on several randomly generated instances to demonstrate the efficacy of the proposed algorithm.  相似文献   

11.
While semidefinite relaxations are known to deliver good approximations for combinatorial optimization problems like graph bisection, their practical scope is mostly associated with small dense instances. For large sparse instances, cutting plane techniques are considered the method of choice. These are also applicable for semidefinite relaxations via the spectral bundle method, which allows to exploit structural properties like sparsity. In order to evaluate the relative strengths of linear and semidefinite approaches for large sparse instances, we set up a common branch-and-cut framework for linear and semidefinite relaxations of the minimum graph bisection problem. It incorporates separation algorithms for valid inequalities of the bisection cut polytope described in a recent study by the authors. While the problem specific cuts help to strengthen the linear relaxation significantly, the semidefinite bound profits much more from separating the cycle inequalities of the cut polytope on a slightly enlarged support. Extensive numerical experiments show that this semidefinite branch-and-cut approach without problem specific cuts is a superior choice to the classical simplex approach exploiting bisection specific inequalities on a clear majority of our large sparse test instances from VLSI design and numerical optimization.  相似文献   

12.
The max-cut problem is a fundamental combinatorial optimisation problem, with many applications. Poljak and Turzik found some facet-defining inequalities for the associated polytope, which we call 2-circulant inequalities. We present a more general family of facet-defining inequalities, an exact separation algorithm that runs in polynomial time, and some computational results.  相似文献   

13.
We introduce the partial order polytope of a digraphD, defined as the convex hull of the incidence vectors of all transitive acyclic arc sets ofD. For this polytope we prove some classes of inequalities to be facet-defining and show that there is a polynomial separation algorithm for each of these classes. The results imply a polynomial separation algorithm for a class of valid inequalities of the clique partitioning polytope that includes the two-chorded odd cycle inequalities. The polyhedral results concerning the partial order polytope are of interest since a cutting plane based algorithm to solve the maximum weighted transitive acyclic subdigraph problem can be used to solve the maximum weighted acyclic subdigraph problem, the maximum weighted linear ordering problem and a flexible manufacturing problem. For the acyclic subdigraph polytope we show that the separation of simplet-reinforcedk-fence-inequalities is -complete.  相似文献   

14.
This paper considers the precedence constrained knapsack problem. More specifically, we are interested in classes of valid inequalities which are facet-defining for the precedence constrained knapsack polytope. We study the complexity of obtaining these facets using the standard sequential lifting procedure. Applying this procedure requires solving a combinatorial problem. For valid inequalities arising from minimal induced covers, we identify a class of lifting coefficients for which this problem can be solved in polynomial time, by using a supermodular function, and for which the values of the lifting coefficients have a combinatorial interpretation. For the remaining lifting coefficients it is shown that this optimization problem is strongly NP-hard. The same lifting procedure can be applied to (1,k)-configurations, although in this case, the same combinatorial interpretation no longer applies. We also consider K-covers, to which the same procedure need not apply in general. We show that facets of the polytope can still be generated using a similar lifting technique. For tree knapsack problems, we observe that all lifting coefficients can be obtained in polynomial time. Computational experiments indicate that these facets significantly strengthen the LP-relaxation. Received July 10, 1997 / Revised version received January 9, 1999? Published online May 12, 1999  相似文献   

15.
Motivated by an application in highway pricing, we consider the problem that consists in setting profit-maximizing tolls on a clique subset of a multicommodity transportation network. We formulate the problem as a linear mixed integer program and propose strong valid inequalities, some of which define facets of the two-commodity polyhedron. The numerical efficiency of these inequalities is assessed by embedding them within a branch-and-cut framework.  相似文献   

16.
The single row facility layout problem (SRFLP) is the NP-hard problem of arranging facilities on a line, while minimizing a weighted sum of the distances between facility pairs. In this paper, a detailed polyhedral study of the SRFLP is performed, and several huge classes of valid and facet-inducing inequalities are derived. Some separation heuristics are presented, along with a primal heuristic based on multi-dimensional scaling. Finally, a branch-and-cut algorithm is described and some encouraging computational results are given.  相似文献   

17.
The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixed-integer knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR and they incorporate upper bounds on the integer variables. It has been shown that these inequalities are facet-defining for the mixed integer knapsack set under certain conditions and generalize several well-known valid inequalities. In this paper, we introduce new classes of valid inequalities for the mixed-integer knapsack set with bounded integer variables, which we call n-step mingling inequalities (for positive integer n). These inequalities incorporate upper bounds on integer variables into n-step MIR and, therefore, unify the concepts of n-step MIR and mingling in a single class of inequalities. Furthermore, we show that for each n, the n-step mingling inequality defines a facet for the mixed integer knapsack set under certain conditions. For n?=?2, we extend the results of Atamtürk and Günlük on facet-defining properties of 2-step mingling inequalities. For n ≥ 3, we present new facets for the mixed integer knapsack set. As a special case we also derive conditions under which the n-step MIR inequalities define facets for the mixed integer knapsack set. In addition, we show that n-step mingling can be used to generate new valid inequalities and facets based on covers and packs defined for mixed integer knapsack sets.  相似文献   

18.
We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities based on a generalization of Miller et al. [A.J. Miller, G.L. Nemhauser, M.W.P. Savelsbergh, On the polyhedral structure of a multi-item production planning model with setup times, Mathematical Programming 94 (2003) 375–405] and Marchand and Wolsey [H. Marchand, L.A. Wolsey, The 0–1 knapsack problem with a single continuous variable, Mathematical Programming 85 (1999) 15–33] results. We also describe fast combinatorial separation algorithms for these new inequalities. We use them in a branch-and-cut framework to solve the problem. Some experimental results showing the effectiveness of the approach are reported.  相似文献   

19.
The mixing set with a knapsack constraint arises in deterministic equivalent of chance-constrained programming problems with finite discrete distributions. We first consider the case that the chance-constrained program has equal probabilities for each scenario. We study the resulting mixing set with a cardinality constraint and propose facet-defining inequalities that subsume known explicit inequalities for this set. We extend these inequalities to obtain valid inequalities for the mixing set with a knapsack constraint. In addition, we propose a compact extended reformulation (with polynomial number of variables and constraints) that characterizes a linear programming equivalent of a single chance constraint with equal scenario probabilities. We introduce a blending procedure to find valid inequalities for intersection of multiple mixing sets. We propose a polynomial-size extended formulation for the intersection of multiple mixing sets with a knapsack constraint that is stronger than the original mixing formulation. We also give a compact extended linear program for the intersection of multiple mixing sets and a cardinality constraint for a special case. We illustrate the effectiveness of the proposed inequalities in our computational experiments with probabilistic lot-sizing problems.  相似文献   

20.
In this paper, we introduce five classes of new valid cutting planes for the precedence-constrained (PC) and/or time-window-constrained (TW) Asymmetric Travelling Salesman Problems (ATSPs) and directed Vehicle Routing Problems (VRPs). We show that all five classes of new inequalities are facet-defining for the directed VRP-TW, under reasonable conditions and the assumption that vehicles are identical. Similar proofs can be developed for the VRP-PC. As ATSP-TW and PC-ATSP can be formulated as directed identical-vehicle VRP-TW and PC-VRP, respectively, this provides a link to study the polyhedral combinatorics for the ATSP-TW and PC-ATSP. The first four classes of these new cutting planes are cycle-breaking inequalities that are lifted from the well-known \({D^-_k}\) and \({D^+_k}\) inequalities (see Grötschel and Padberg in Polyhedral theory. The traveling salesman problem: a guided tour of combinatorial optimization, Wiley, New York, 1985). The last class of new cutting planes, the TW 2 inequalities, are infeasible-path elimination inequalities. Separation of these constraints will also be discussed. We also present prelimanry numerical results to demonstrate the strengh of these new cutting planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号