首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silica Sol-Gel Coatings on Metals Produced by EPD   总被引:1,自引:0,他引:1  
The objective of this work has been to combine the sol-gel method and the electrophoretic deposition (EPD) process to prepare thick coatings onto metallic substrates. Two different routes were used for preparing the sol-gel silica suspensions. On one hand, silica particulate sols were obtained by basic catalysis of alkoxides and alkylalkoxides. On the other, silica suspensions were prepared by adding a commercial colloidal silica sol to an organic-inorganic acid catalysed silica sol. The properties of the suspension and the physical parameters associated to EPD (current density, potential, electric field and deposition time) were studied. Crack-free deposits up to 20 m were obtained after drying and crack-free glass-like coatings of 12 m after sintering at 500°C for 30 minutes. The electrochemical behaviour of these coatings was evaluated by potentiodynamic methods, showing an excellent behaviour against corrosion.  相似文献   

2.
We investigated electrophoretic deposition from a suspension containing positively charged particles, isopropanol, water, and Mg(NO(3))(2), with the aim of describing the deposition rates of the particles and Mg(OH)(2), which is formed due to chemical reactions at the electrode, in terms of quantitative models. LaB(6) particles were used as a model system. The particle layer is consolidated by simultaneous precipitation of Mg(OH)(2) which acts as a binder to hold the particles together. The Mg(OH)(2) content was determined solely by the amount of charge passed through the cell. Quantitative precipitation of all OH(-) formed at the electrode was observed, except at very low current. The occurrence of a minimum current was ascribed to a threshold for Mg(OH)(2) deposition. The same minimum current was observed for particle deposition. In combination with results using NaNO(3), where no adherent layer was formed, this illustrates that Mg(OH)(2) binder is necessary for consolidation. Once the minimum current was exceeded, it was found that all particles that migrate to the electrode under the influence of the electric field contribute to the formation of the layer, i.e., the "sticking coefficient" for the particles equals 1.0. The applicability of the particle and Mg(OH)(2) deposition models was tested by variation of the Mg(NO(3))(2) concentration, pH, and water content. Copyright 2000 Academic Press.  相似文献   

3.
Optical Application of (Pigmented) Sol-Gel Coatings   总被引:3,自引:0,他引:3  
The performance of the anti-reflection stack antimony-doped tin oxide/SiO2 improves considerably if the refractive index of the SiO2 layer decreases from 1.45 to 1.41 by the introduction of porosity. Porosity can be introduced by the addition of high-boiling co-solvents (or templates e.g. sebacates) to the coating liquid. Fine-tuning of the liquid composition allows the formation of a homogeneous, non-scattering SiO2 layer with a refractive index of 1.41 and pencil hardness of H7-H8 on large screens (diagonal >1 meter) if a curing temperature of 160°C was used.Another interesting application is the formation of transparent, strongly coloured layers on lamp bulbs. Due to the high operating temperatures, strict requirements are placed on the matrix material and the pigment used. Inorganic pigments have good temperature stability, but their colour saturation is weaker than that of organic pigments, demanding the formation of relatively thick coatings. In order to achieve this, Methyltrimethoxysilane (MTMS) was used as matrix material precursor. Fully transparent, temperature-resistant coatings were developed.  相似文献   

4.
Hydroxyapatite coatings can be readily deposited on metal substrates by electrophoretic deposition. However, subsequent sintering is highly problematic owing to the fact that temperatures in excess of 1100°C are required for commercial hydroxyapatite powders to achieve high density. Such temperatures damage the metal and induce metal-catalysed decomposition of the hydroxyapatite. Furthermore, the firing shrinkage of the hydroxyapatite coating on a constraining metal substrate leads to severe cracking. The present study has overcome these problems using a novel approach: the use of aged nanoparticulate hydroxyapatite sols (lower sintering temperature) and a dual coating strategy that overcomes the cracking problem. Dual layers of uncalcined hydroxyapatite (HAp) powder were electrophoretically coated on Ti, Ti6Al4V and 316L stainless steel metal substrates, sintered at 875–1000°C, and characterised by SEM and XRD, and interfacial shear strength measurement. Dual coatings on stainless steel had an average high bond strength (about 23 MPa), and dual coatings on titanium and titanium alloy had moderate strengths (about 14 and 11 MPa, respectively), in comparison with the measured shear strength of bone (35 MPa). SEM and XRD demonstrated that the second layer blended seamlessly with the first and filled the cracks in the first. The superior result on stainless steel is attributed to a more appropriate thermal expansion match with hydroxyapatite, the thinner oxide layer, or a combination of these factors.  相似文献   

5.
刘建华  董琳  于美  李松梅  詹中伟 《化学学报》2012,70(20):2179-2186
采用阴极电泳沉积的方法在LC4铝合金表面制备硅锆有机-无机杂化涂层, 并探讨了电泳沉积条件对涂层形貌、结构以及耐蚀性的影响. 采用纳米粒度仪检测了不同硅锆杂化溶胶的zeta电位; 采用扫描电子显微镜(SEM)和原子力显微镜(AFM)观察了涂层的表面微观形貌和粗糙程度; 采用傅里叶红外光谱(FTIR)研究了涂层的化学结构; 采用电化学方法研究了沉积电压对涂层耐蚀性能的影响, 进而探讨了电泳沉积增强杂化涂层耐蚀性的机理. 结果显示沉积体系的pH为1.6、沉积电压为5 V时为最佳的沉积条件, 所获得的硅锆有机-无机杂化涂层表面均匀致密性最好, 粗糙程度和耐蚀性都得到了明显的改善, 在3.5% NaCl溶液中体现出较好的耐蚀作用.  相似文献   

6.
Thick films were prepared by the electrophoretic sol-gel deposition of organically modified, sub-micron silica particles. The silica particles were modified with 3-aminopropyltriethoxysilane (APS) and vinyltriethoxysilane (VTES). Smooth and crack-free films ca. 15 m thick were obtained when APS modified silica particles were used for the cathodic electrophoretic deposition. Thick films with decreased open spaces among particles were obtained when silica particles modified with VTES were co-deposited with an organic polymer, polyethylene maleate.  相似文献   

7.
Physical Properties of Sol-Gel Coatings   总被引:3,自引:0,他引:3  
One of the most important applications of sol-gel technology is the fabrication of coatings. This is because of the possibility of applying oxide coatings with practically all types of chemical compositions at low ambient temperatures on many substrates of various shapes through the use of liquid solutions. Both oxides and different types of organic-inorganic hybrid coatings have been reported. Both oxides and hybrid coatings are usually amorphous at ambient temperatures but some oxides can be converted to the crystalline phase with heating. Regardless of the intended applications of the coatings their physical properties are always of importance. For instance, an anti-reflective coating for an automobile mirror is of little practical value unless it is fairly scratch-resistant. In this review which covers published information in the past fifteen years, some of the more important results of physical properties of sol-gel derived coatings are discussed firstly for oxides and then for organic-inorganic hybrids. It appears that properties such as the hardness of oxide coatings are inadequate unless the heat-treatment temperatures are in excess of about 400°C. The hybrid coatings, especially when they contain a dispersed phase of a hard solid like colloidal silica, can be processed at temperatures below about 150°C and can improve the performance of organic plastics such as the polycarbonates. There is insufficient scientific understanding of the relationship between physical properties and other interdependent variables such as processing conditions, chemistry and coating thickness. More research in this area will undoubtedly contribute to the availability of better and new coatings via the sol-gel approach.  相似文献   

8.
A general theory is developed for the electrophoretic mobility of spherical soft particles (i.e., spherical hard colloidal particles of radius a coated with a layer of polyelectrolytes of thickness d) in concentrated suspensions in an electrolyte solution as a function of the particle volume fraction φ on the basis of Kuwabara's cell model. In the limit d-->0, the mobility expression obtained tends to that for spherical hard particles in concentrated suspensions, whereas in the limit a-->0, it becomes that for spherical polyelectrolytes (charged porous spheres with no particle core). Simple approximate analytic mobility expressions are derived for the case where relaxation effect is negligible. It is found that in practical cases, the φ dependence of the mobility is negligible for da, the mobility strongly decreases with increasing φ. Copyright 2000 Academic Press.  相似文献   

9.
以硅酸锆粉体为原料,异丙醇为溶剂,碘为荷电介质,采用水热电泳沉积法在C/C-SiC复合材料基体表面制备了硅酸锆外涂层。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对涂层的晶相结构和微观形貌进行表征。研究了水热电泳沉积电压对涂层的显微结构及高温抗氧化性能的影响,并分析了涂层试样在1 773 K下静态空气中的氧化行为。结果表明:电泳沉积电压在160~200 V范围内,复合涂层的致密程度、厚度及抗氧化性能随着沉积电压的升高而提高。但沉积电压过高(220 V),复合涂层中出现微裂纹等缺陷,此时涂层的抗氧化性能下降。沉积电压控制在200 V时所制备的复合涂层可在1 773 K静态空气中有效保护C/C复合材料332 h,氧化失重率仅为0.2%,相应的氧化失重速率稳定在48.3 μg·cm-2·h-1的极低水平。  相似文献   

10.
Mussel‐inspired self‐polymerized catecholamine coatings have been widely utilized as a versatile coating strategy that can be applied to a variety of substrates. For the first time, nanomechanical measurements and an evaluation of the contribution of primary amine groups to poly(catecholamine) coatings have been conducted using a surface‐forces apparatus. The adhesive strength between the poly(catecholamine) layers is 30‐times higher than that of a poly(catechol) coating. The origin of the strong attraction between the poly(catecholamine) layers is probably due to surface salt displacement by the primary amine, π–π stacking (the quadrupole–quadrupole interaction of indolic crosslinks), and cation–π interactions (the monopole–quadrupole interaction between positively charged amine groups and the indolic crosslinks). The contribution of the primary amine group to the catecholamine coating is vital for the design and development of mussel‐inspired catechol‐based coating materials.  相似文献   

11.
In practice, low temperature sintering is always the most desirable route to fabricate ceramic composites for industrial manufacturers and an economic way to produce ceramics with unique microstructure for technological applications. Normally the sintering temperature for dense YSZ coating is about 1500℃. Recently many studies have experimentally found that dense ceramic composites can be achieved at a sintering temperature lower by several hundred degrees Celsius for nano-sized powders than for coarse powders[1-2]. Electrochemical processing is an attractive method for making ceramic films and powders because it offers the advantages of low temperature sintering, low cost and good control of the green forms[3-4].  相似文献   

12.
Sulphated zirconias with various atomic S/Zr ratios were prepared by sol–gel method. The acidity of these solids has been studied through qualitative and quantitative XPS studies, surface potential measurements and isopropanol dehydration reaction. The Correlation between corresponding results show that when zirconia is doped by sulfate groups the surface becomes more acidic in term of Lewis acidity and that the oxygen species in the sample exist in many types, which one is related to solid acidity. This type of oxygen species, probably in the hydroxyl groups, is other than the oxygen species of zirconia network and the oxygen sulphate groups. Consequently, acidity of sulphated zirconia is mainly due to a strong Lewis nature of the surface, which can give a Brönsted acidity by water or reactant chemisorptions  相似文献   

13.
Wettability of Microstructured Hydrophobic Sol-Gel Coatings   总被引:8,自引:0,他引:8  
The formation of appropriate surface patterns on hydrophobic surfaces leads to a general change in their wettability and the contact angle increases substantially. Such coatings are of great technical interest, especially if aqueous media are concerned as in the prevention of ice-adhesion. For this reason various fluorine containing nanocomposite coatings have been developed by sol-gel processing.The morphology of these hydrophobic surfaces has been controlled by varying the content of silica particles regarding size, degree of aggregation, and concentration. The wettability is characterized by the measurement of dynamic contact angles against water. The complete range of different wettability regimes is accessible, i.e. smooth surfaces (both low advancing contact angle and hysteresis between advancing and receding contact angle), surfaces within the Wenzel regime (high advancing contact angle and hysteresis), and superhydrophobic surfaces (high advancing contact angle and low hysteresis). The wettability is correlated with the surface roughness as determined using a profilometer or AFM.The wettability of superhydrophobic surfaces is greatly dependent on the surface tension of the liquid. By comparison of the tiltangle t of a smooth and a superhydrophobic surface, a critical surface tension c is identified, where t (smooth surface) = t (microstructured surface). The microstructured surface provides a better run-off of liquids lg > c 55 mN·m–1.  相似文献   

14.
在氧化铟锡( ITO)导电玻璃表面电泳沉积制备ZnO-C60和ZnO-MWCNT复合涂层电极,经后续热处理增强其结合强度,通过SEM观察2种电极复合涂层的表面形貌,并使用CHI 705电化学分析仪和PMI-E电致化学发光系统测定其光电性质.结果表明,ZnO-C60复合涂层电极具有较高的稳定性,在可见光辐照下,该电极显示...  相似文献   

15.
Organic-inorganic nanocomposite protective coatings are prepared on aluminum substrates by the spinning technique with the concept of incorporating homogeneously nanosized particles (of AlOOH, Al2O3, ZrO2, SiC) into molecular organic-inorganic hybrid matrices. The hybrid matrices are prepared from epoxysilane and bisphenol A with imidazol as catalyst. The AlOOH particles are derived from aluminum isoprooxide and introduced into the hybrid sols directly, and Al2O3, ZrO2, SiC particles are first surface-modified with Si–OH from hydrolyzed TEOS. The coatings are dense, smooth and flexible and inhibit corrosion.  相似文献   

16.
Hydroxyapatite Ca10(PO4)6(OH)2 (HA) is an important material for bone and tooth implants, as its chemical composition is similar to that of bone tissue. Owing to the inferior mechanical properties of HA, significant research activity has been associated with the development of HA coatings and composites. The interest in electrophoresis for biomedical applications steins from a variety of reasons such as the possibility of deposition of stoichiometric, high purity material to a degree not easily achievable by other processing techniques and the possibility of forming coatings and bodies of complex shape[1]. In this work, the experimental results of a study of electrophoretic deposition of HA powders, performed in isopropyl alcohol or ethanol as a suspension medium, are reported.  相似文献   

17.
A dip-coating technique is designed for deposition of poly(methyl methacrylate) (PMMA) from water/2-propanol mixture, avoiding the use of traditional toxic solvents. Solutions of PMMA macromolecules with high molecular weight (MW) are obtained for a water/2-propanol ratio of 0.15–0.33 and the solubilization mechanism is discussed. The ability to use concentrated PMMA solutions and high MW of the polymer are the key factors for the successful dip coating deposition. The coating mass for 10 g L−1 polymer solutions shows a maximum at a water/2-propanol ratio of 0.25. The deposition yield increases with the polymer concentration increase and with an increasing number of the deposited layers. PMMA deposits protect stainless steel from aqueous corrosion. The coating technique allows for the fabrication of composite coatings, containing flame-retardant materials (FRMs), such as commercial halloysite, huntite, hydrotalcite, and synthesized Al(OH)3, in the PMMA matrix. The FRM content in the coatings is modified by variation of the FRM content in colloidal suspensions. A fundamentally new method is developed, which is based on the salting out aided dispersive extraction of Al(OH)3 from the aqueous synthesis medium to 2-propanol. It is based on the use of hexadecylphosphonic acid molecules as extractors. The method offers advantages of reduced agglomeration.  相似文献   

18.
Data of 3 1P NMR spectroscopy, conductometry, and pH-metry, and results of experiments on Na2WO4 replacement with Na2H[PW1 2O4 2] were used to study the relationship between the joint and proportional incorporation of P and W (Mo) into coatings, on the one hand, and the presence of heteropolyoxo anions in the electrolyte, on the other.  相似文献   

19.
The reactions of sterically hindered amines (SHA) were investigated in acetonitrile solutions and TiO2 suspensions upon exposure to monochromatic radiation, λ = 365 nm, by means of in situ EPR spectroscopy. The formation of singlet oxygen, as one of the possible oxidation agents for SHA, in these systems is affected significantly by solvent used and the experimental conditions. Experiments in homogeneous media evidenced alternative pathways for the SHA oxidation with a variety reactive oxygen species involved. In anhydrous acetonitrile solutions containing KO2, the SHA oxidation was negligible not only in the dark but also on continuous exposure. However, the presence of water, even at low concentrations, led to the transformation of O2?? to singlet oxygen and hydrogen peroxide, which served as a source of hydroxyl radicals. These species participated in oxidation of SHA resulting in the generation of nitroxide radicals. To investigate the influence of different competitive reactions of SHA with other ROS formed upon TiO2 photoexcitation, a series of experiments using different additives (e.g. KO2, H2O2, NaN3, dimethylsulfoxide, methanol as organic cosolvents) under air or argon were performed. The detailed analysis of paramagnetic intermediates formed upon the irradiation of the studied systems was accomplished using EPR spin trapping technique.  相似文献   

20.
Sol-Gel Coatings for the Protection of Brass and Bronze   总被引:4,自引:0,他引:4  
The effectiveness of sol-gel Ormosil coatings as barriers coatings has already been demonstrated, and it is natural to assume that such coatings can play a unique role in art conservation, where object corrosion and decay are often a major issue. The main feature of ormosil coatings that would make them preferable to polymers is their potentially higher stability to ultra-violet radiation, controlled porosity and good adhesion to many different substrates. The permeability to various gases can also be tailored with changes in the chemical structure. In previous work, we have applied the sol-gel process as part of a multiplayer coating in the conservation of the Last Judgment mosaic in Prague. In the present work, we explore the use of sol-gel organic-inorganic hybrid coatings on various copper alloy substrates frequently encountered in art conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号