首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Summary The behavior of cadmium labeled with 109Cd in different depth horizons of arable and forest soils were studied under static (batch) conditions in three interconnected processes, which consist of sorption, desorption and extraction. In the sorption, Cd2+ was applied in the aqueous calcium nitrate solution. Both untreated soils and peroxide treated soils were used in order to remove organic matter from some of the soil samples used in parallel. The influence of the V/m ratio on the sorption coefficients was investigated in preliminary experiments with untreated soils. Contrary to the usually short-term sorption, a long-term sorption of cadmium was investigated in untreated and treated soil horizons, which lasted more than fortnight. Kinetic studies of sorption were carried out and cadmium concentration dependence in aqueous phase of the second order kinetic constants was observed. For evaluation of sorption and desorption processes Freundlich isotherms were used. It was found that the Freundlich adsorption intensity coefficient is more time dependent than the absorption capacity coefficient, and the sorption itself consists of rapid and slow processes according to the soil constituents. Desorption and extraction processes revealed the possibility of cadmium recovery from various soil horizons. Based on the obtained results two- or three-stage theory of cadmium retention in soils was proposed. Some new insight into the role of organic matter in the sorption/desorption process of cadmium is also presented.  相似文献   

2.
The effect of different solid components of calcareous soil on the retention of Sr was investigated by using batch technique and selective extraction method. The sorption and desorption isotherms of Sr on the untreated calcareous soil and the three treated soils were determined at 20°C, pH 7.8±0.2 and in the presence of 0.001 M CaCl2. It was found that all isotherms are linear and that the sorption of Sr on the calcareous soil can be described by a reversible sorption process and the sorption mechanism is mainly ion exchange.  相似文献   

3.
The effect of different solid soil components of calcareous soils on the retention of SeO3 has been investigated by a batch technique and selective extraction method. The sorption and desorption isotherms of SeO3 on the untreated calcareous soil and the three treated soils were determined at 20°C, pH 7.8±0.2 and in the presence of 0.001M CaCl2. It was found that all isotherms are linear, the sorption-desorption hysteresis for untreated soil and treated soils is obvious and the retention of SeO3 in calcareous soil is mainly attributed to the oxides.  相似文献   

4.
The effect of different solid soil components of calcareous soils on the retention of SeO3 has been investigated by a batch technique and selective extraction method. The sorption and desorption isotherms of SeO3 on the untreated calcareous soil and the three treated soils were determined at 20°C, pH 7.8±0.2 and in the presence of 0.001M CaCl2. It was found that all isotherms are linear, the sorption-desorption hysteresis for untreated soil and treated soils is obvious and the retention of SeO3 in calcareous soil is mainly attributed to the oxides.  相似文献   

5.
The effect of different solid components of calcareous soil on the retention of I was investigated by a batch technique and selective extraction method, and the effect of -irradiation was also investigated. The sorption and desorption isotherms of I on the one untreated, three treated soils and the calcareous soil irradiated with -rays were determined at 30 °C, pH 8.1±0.2 and in the presence of 1.0×10–4M or 0.67×10–5M CaCl2. It was found that the sorption-desorption hysteresis on the calcareous soil actually occurs on the same time scale, that iodine can be easily transported in the calcareous soil and that the exceptionally high contribution of organic matter to the iodine sorption is demonstrated.  相似文献   

6.
This study was conducted to investigate the effect of time on cadmium (109Cd) availability in four typical soils of the Danubian Lowland through the modified Tessier’s sequential extraction procedure as well as its short-term sorption in the bulk soils and their two grain-size fractions. Results of the fractionation study showed that there were significant changes in the proportional distribution of cadmium in all studied soils during 180 days of incubation with spiked cadmium. Generally, the proportions of cadmium associated with the most weakly bound fractions (water soluble and exchangeable) tended to decrease with corresponding increases in the residual fraction during the incubation. The extent of cadmium sorption in all studied soils was high, exceeding 95% of the spiked amount after 60 min of incubation, likely due to slightly alkaline character of the soils. The finding that soil particles less than 10 μm sorbed up to 51% of the spiked cadmium in soils is of great importance since they could play a role in colloid-facilitated transport of cadmium through preferential pathways, as previously observed in the region. Addition of 1 M ammonium nitrate into the soil solution generally decreased cadmium sorption in all four soils. The lowest extractabilities of Cd were obtained using 1 M ammonium nitrate as a single extractant, whereas 0.025 M ammonium ethylenediaminetetraacetate solution extracted the highest proportions of cadmium from the studied soils.  相似文献   

7.
Summary The sorption and desorption of radionuclide 90Sr2+were investigated on untreated calcareous soil and two treated soils to remove organic matter and calcium carbonate using batch technique. The experiments were carried out at ambient condition, pH 7.8±0.1 and in the presence of 0.001M NaCl. Effects of fulvic acid and ionic strength on the sorption of 90Sr2+on calcareous soil were also studied. It was found that the sorption isotherms are linear in the strontium concentration range used herein, and the sorption of 90Sr2+on the calcareous soil can be described as a reversible sorption process and the sorption mechanism is mainly ion-exchange. The sorption is dependent on ionic strength, and fulvic acid enhances the sorption of 90Sr2+on calcareous soil. Organic matter present in the calcareous soil is a significant trap of 90Sr2+and is responsible for the sorption.  相似文献   

8.
The sorption and desorption isotherms of untreated calcareous soil and three treated soils to remove CaCO3, organic matter (OM) and both CaCO3 and OM were determined and analyzed with the Freundlich equation at pH 7.8, moderate concentrations of NpO2 + (~10-5mol/l), in the presence of 0.01 mol/l CaCl2 and under ambient aerobic conditions. The relative contribution of CaCO3 and OM to the neptunium(V) sorption on calcareous soil and the sorption/desorption hysteresis is discussed. The effects of adding fulvic acid (FA) and carbonate in to the solution on the sorption of neptunium(V) on the soils were also studied. The sorption and desorption characteristics of NpO2 +, Zn2+, Sr2+ and Cs+ on the soils are compared.  相似文献   

9.
Heavy metals can be immobilized by soils and their distribution among the particulate soil components depends on the identity and amount of the metal, the properties of the soil, and other environmental factors. Cd, Cu and Pb are among the most potentially toxic heavy metals, are present--often together--in numerous polluting spills and in agrochemicals. We evaluated the individual and competitive sorption and retention of Cd, Cu and Pb on 20 soil horizons. As is usual, the isotherms constructed were so irregular, especially the retention isotherms, that it was not possible to classify and compare them in terms of the conventional isotherm shapes. Nor could they be compared using Langmuir or Freundlich parameters, since not all could be fitted with either of these equations. They were therefore characterized and compared in terms of several varieties of distribution coefficient, including a novel adimensional parameter K(r) which on the basis of correlation and principal components analyses was judged to be the most coherent and generally applicable to all experimental conditions (sorption and desorption starting from single- or multi-metal solutions). K(r) proved to be mainly determined by soil pH, effective cation exchange capacity, and Mn oxides content.  相似文献   

10.
The sorption and migration of radiostrontium in a calcareous soil from Yu Zhong county of Gansu province (China) was studied using batch and column experiments. Sorption isotherms, breakthrough curves and concentration profiles for the untreated soil and the soil treated to remove CaCO3 were determined, respectively. It was found that radiostrontium is a relatively mobile nuclide in calcareous soil and removal of CaCO3 from the soil slightly increases the retention ability for radiostrontium. The breakthrough curves were fitted to the analytical solution of a one-dimensional convection-dispersion transport model that assumes a reversible linear isotherm. Good agreement was obtained between the measured and predicted concentration profiles.  相似文献   

11.
The influence of background electrolytes (KCl, NH4Cl, CTABr) in different concentrations on the sorption ability of radiocesium by measuring the distribution coefficient has been studied. Sorption isotherms of cesium for characterization of soil sorption ability were used. Sorption of cesium depends on its concentration and at least three different sorption sites are active in the sorption process. In the case of low cesium concentration, two very selective sites with high distribution coefficients are responsible for the sorption. With increasing cesium concentration in the aqueous phase, distribution coefficient is decreasing. Frayed edge sites of illite in soil and exchangeable potassium are probably responsible for nonlinear isotherms at low cesium concentrations. From sorption isotherms and determination of potassium by activation analysis, it was found that the capacity of very selective sites for different concentrations of background electrolyte was up to 7 mmol·kg–1.  相似文献   

12.
In the present study, the sorption of cadmium from aqueous phase by wheat bran was investigated with and without the assistance of ultrasound. Kinetic data and sorption equilibrium isotherms were carried out in batch conditions. The influence of different operating parameters such as ultrasonic power, cadmium initial concentration, sorbent mass, temperature, and the combination of ultrasound and mechanical stirring on the kinetics of cadmium removal was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the removal of cadmium, especially in the combined method. The sorption kinetic data were found to be well-represented by the pseudo-second-order rate equation, both in the absence and presence of ultrasound as well as in the combined process (stirring and ultrasonication). Ultrasonic power played a key role in the removal of cadmium. Equilibrium isotherm results could be well described by the Langmuir model both with and without the assistance of ultrasound. The effect of temperature on the sorption isotherms of cadmium in the absence and presence of ultrasound has been also studied and the thermodynamic parameters DeltaG degrees, DeltaH degrees, and DeltaS degrees were determined. The monolayer sorption capacities were 51.81, 35.09, and 22.78 mg g(-1) for experiments conducted by the combined process, in the presence of ultrasound, and in passive conditions, respectively. The combination ultrasound-stirring for the sorption process was shown to be of interest for the treatment of wastewaters contaminated with cadmium.  相似文献   

13.
Summary The adsorption and desorption of Am(III) on a calcareous soil (sierozem) and its parent material (loess) were studied by batch technique. The molarities of the Am(III) aqueous solutions were less than 5 . 10-9 mol/l. High adsorbability was found of Am(III) on the calcareous soil and its parent material. In order to decrease the adsorption and, hence, to investigate the adsorption characteristics properly, stable Eu3+ as hold back carrier and analogue was added to the aqueous solution. The relative contributions of CaCO3, organic matter (OM) to the Am(III) adsorption on calcareous soil and its parent material were investigated. The adsorption and desorption isotherms of Am(III) on untreated soil and loess and the three kinds of treated soils and three kinds of treated loesses to remove CaCO3, OM and both CaCO3 and OM were determined, respectively. It was found that all isotherms were linear, the average distribution coefficients (K-d) for the untreated soil and for the untreated loess were almost equal, while there was an obvious difference between the values of the average distribution coefficients (K-d) for the treated soil and the treated loess to remove CaCO3 or OM. The adsorption-desorption hysteresis on the untreated and treated soils and loesses actually occurred and there was an obvious difference between the hysteresis coefficients on both the corresponding treated soil and loess. It can be concluded that the adsorbability of Am(III) on calcareous soil is similar to that on its parent material, and that the contributions of CaCO3 and OM to the Am(III) adsorption by the untreated soil are different from those by the untreated parent material.  相似文献   

14.
Many factors may affect the heavy metals sorption on natural zeolites among them the temperature, for this reason in this paper the cadmium retention behavior on Mexican zeolitic rich tuff as a function of temperature is considered. The kinetic and the isotherms were determined at 303, 318, and 333 K, the remaining cadmium in the solution samples was analyzed by atomic absorption spectrometry. The pseudo-second order rate constant, k, as well as the apparent diffusion coefficients were calculated from the cadmium uptake by the zeolitic rock as a function of the contact time and temperature, the highest amounts were found for the experiments done at 333 K. The maximum cadmium adsorption capacity by the zeolitic material was 12.2 mg Cd2+/g at 318 K corresponding to 20% of the effective ion exchange capacity of the Chihuahua zeolitic rock. In order to explain the cadmium sorption behavior different kinetics and isotherm models were considered.  相似文献   

15.
Water vapor sorption on morphine sulphate was studied in a twin double sorption microcalorimeter at 25°C. The vapor sorption isotherm and the differential heats of sorption were determined simultaneously from dry condition to a water activity of 0.99. Two well resolved hydration steps were obtained on the sorption isotherm at water activities of 0.01 and 0.22 corresponding to the formation of dihydrate and pentahydrate of morphine sulphate. They were accompanied by constant values of the differential heats of sorption: –24 kJ mol–1(H2O) for the dihydrate formation and –10 kJ mol–1(H2O) for the pentahydrate formation.The calorimetrically obtained sorption isotherms were compared with the results of Karl Fisher titrations of morphine sulphate samples equilibrated at different water activities. The appearance of a liquid phase in the morphine sulphate at high water activities is discussed on the basis of the obtained differential heats of sorption and measured heat capacities of morphine sulphate at different water activities.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
Measurement of adsorption excess isotherms of methanol-benzene mixtures was applied to the characterization of soil particle surfaces. The sorption capacity and Gibbs energy of sorption of the solid-liquid interface were determined for montmorillonite, three types of soil, and their humin fractions. The soils were found to be less polar or less hydrophilic than the clay, and the humin fraction of soils was found to be less hydrophilic than the whole soils. The soil and humin samples have heterogeneous surfaces which can be divided in two regions on the basis of their relative polarity. The x-axis intersection of the straight section of isotherm assigns the relative proportions of the hydrophilic and hydrophobic regions of the surface.  相似文献   

17.
Abstract

Adsorption isotherms of metamitron on model soil colloidal components: kaolinite, illite, montmorillonite, iron oxide and humic acid, and their binary associations were obtained using a batch equilibration procedure. Sorption parameters, Kf and nf, were calculated by fitting the sorption data to the Freundlich equation and results obtained for binary associations were compared with those obtained for the individual model components. The sorption efficiency of the humic acids and their binary associations was measured as Koc. The adsorption behaviour of the < 2 μm fraction of two soils from Southern Spain was also studied as natural particulate matter. Montmorillonite and humic acids were found to be the most important components responsible for metamitron retention by the model adsorbents studied. On the contrary, metamitron showed little interaction with kaolinite, illite or iron oxide. These individual adsorption behaviours were reproduced in the montmorillonite-iron oxide-humic acid binary systems, but with differences suggesting changes on the surface properties upon association. Differences in Koc values of isolated humic acids and their associations indicate that the interaction transforms the humic acid surfaces and suggest different types of bonding between colloids and metamitron. The results obtained with model adsorbents and their associations were in agreement with the highest adsorption of metamitron found for the natural clay fraction of two soils which displayed the largest adsorption in that with the highest content in montmorillonite and organic carbon. The importance of organic matter and montmorillonite in metamitron adsorption by colloidal components was also shown by the decrease in Kf and the increase in Koc observed after removal of organic matter from the soil clay fraction with the highest organic carbon content.  相似文献   

18.
Summary Sorption of60Co,85Sr, 137Cs and125I have been studied on samples originated from Boda (siltstone-) claystone formation (BCF) (Hungary). The distribution of Kdvalues have been determined in static batch experiments using natural groundwater. The order of sorption of isotopes was Co>Cs>Sr>I, where iodine exhibits sorption properties in a modest extent. The sorption isotherm was determined for Cs from measurements carried out in 10-5-10-1M initial concentration range. The isotherm can be described with non-linear Freundlich approximation in the range of</o:p></p> 10-7-10-4M equilibrium concentration. At concentrations >10-2M the isotherm achieves saturation. Hence, it is suggested that sorption of Cs on BCF is dominated by cation-exchange reactions on the illite mineral component. In the case of Co and Sr, precipitation reactions occurred during the experiments performed with carrier-containing solutions. This can be attributed to the low values of solubility product constants of SrCO3, SrSO4and Co(OH)2, formed from anions present in the natural groundwater.</p> </p>  相似文献   

19.
In order to understand the mobility of uranium it is very important to know about its sorption kinetics and the thermodynamics behind the sorption process on soil. In the present study the sorption kinetics of uranium was studied in soil and the influence parameters to the sorption process, such as initial uranium concentration, pH, contact time and temperature were investigated. Distribution coefficient of uranium on soil was measured by laboratory batch method. Experimental isotherms evaluated from the distribution coefficients were fit to Langmuir, Freundlich and Dubinin?CRadushkevich (D?CR) models. The sorption energy for uranium from the D?CR adsorption isotherm was calculated to be 7.07?kJ?mol?1.The values of ??H and ??S were calculated to be 37.33?kJ?mol?1 and 162?J?K?1?mol?1, respectively. ??G at 30?°C was estimated to be ?11.76?kJ?mol?1. From sorption kinetics of uranium the reaction rate was calculated to be 1.6?×?10?3?min?1.  相似文献   

20.
The sorption and desorption of radiocesium on a calcareous soil from Jiuqian County of Gansu Province (China) were studied by using batch and column experiments. The sorption-desorption isotherms and the breakthrough curves, displacement curves on the whole soil and two treated soils were determined. Based on these results, it was found that the sorption and retention of cesium are mainly determined by the clay minerals, that the sorption-desorption hysteresis of cesium on the calcareous soil is obvious and that the organic matter has a little positive contribution and the calcium carbonate has a little negative contribution to the sorption of cesium on the whole soil. The results from batch experiments were consistent with the results from column experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号