首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
应用LIBS技术测量土壤重金属Cr含量   总被引:1,自引:0,他引:1  
应用激光诱导击穿光谱分析技术(laser-induced break-down spectroscopy, LIBS)开展了土壤中重金属铬元素含量探测研究。实验中激光波长为1 064 nm, 脉冲宽度为8 ns, 重复频率10 Hz,选取Cr 427.4 nm作为光谱分析谱线。实验结果表明,在光谱采集相对于激光脉冲延迟时间为4.78 μs, 土壤样品表面位于聚焦透镜焦后1 mm的实验条件下, Cr元素浓度测量的相对标准偏差(RSD)为12.1%, 检测限为2.01 ppm, 元素实验测量与标准值的相对偏差为5.15%。可以看出LIBS技术具有低检测限、测量精度高等优点, 这对土壤中重金属污染和监测环境质量的精确、快速检测等问题具有重要意义。  相似文献   

2.
为研究双脉冲激光诱导击穿光谱(DP-LIBS)对水体中铜(Cu)元素检测灵敏度的影响,采用共线双脉冲LIBS检测装置对所配置的含Cu水溶液进行激光诱导击穿光谱试验。结果显示:与运用单脉冲激光诱导击穿光谱(SP-LIBS)检测水体中Cu元素相比,运用DP-LIBS探测到的光谱明显增强,并且其检测结果受光谱仪采集的延迟时间、两脉冲之间的脉冲延迟时间、双脉冲激光能量等因素的影响显著。确定最佳的试验条件为:光谱采集延迟时间为1 380 ns,脉冲延迟时间为25 ns,双脉冲激光能量为100 mJ。分别对铜元素324.7和327.4 nm的特征谱线进行定量分析,两谱线的检测限分别是3.5和4.84 μg·mL-1,且相对标准偏差都在10%以内。用500 μg·mL-1样品对特征谱线为324.7 nm所建立的定标曲线进行验证,反演得出该样品的浓度为446 μg·mL-1,相对误差为10.8%。研究表明DP-LIBS能够提高Cu元素的检测灵敏度,同时具有较高的稳定性。  相似文献   

3.
基于激光诱导击穿光谱技术对钢中Mn和Cr元素的定量分析   总被引:2,自引:0,他引:2  
Wang Q  Chen XL  Yu RH  Xu MM  Yang Y  Wu B  Ni ZB  Dong FZ 《光谱学与光谱分析》2011,31(9):2546-2551
采用激光诱导击穿光谱分析技术对钢样中锰、铬两种微量元素的含量进行了测量.实验研究发现,最优取样的延迟时间为2.0μs,最佳激光光束聚焦位置和光谱收集探头分别位于样品表面以下3.5mm和表面以上1.5mm处.以Mn Ⅰ:403.07 nm和Cr Ⅰ:427.48 nm作为分析线,分别采用传统定量分析和内定标的方法对钢样中...  相似文献   

4.
远程激光诱导击穿光谱技术分析岩石元素成分   总被引:2,自引:0,他引:2  
远程激光诱导击穿光谱技术是一种利用脉冲激光和聚焦光路对远距离目标烧蚀击穿,获取目标等离子体光谱,定性或定量分析物质元素组成的光谱探测技术。设计并搭建了一套远程激光诱导击穿光谱系统。该系统结合卡式望远镜光学结构,实现探测2~10 m距离的目标、并可自动变焦。基于该系统提出一种远程探测岩石主要元素含量方法。通过对比实验,研究了脉冲能量、采集延时、积分时间、探测点累计探测次数对光谱信号的影响,确定了岩石谱线获得的最佳条件。选择48块岩石标本和6种常见国标岩石样品(页岩、花岗岩、安山岩、玄武岩、片麻岩、伟晶岩)进行LIBS实验。以原子光谱数据库为参考,根据岩石的主要元素提取特征谱线(SiⅠ390.55 nm,AlⅠ394.40 nm,AlⅠ396.15 nm,CaⅡ396.85 nm,FeⅠ404. 60 nm,SiⅠ500.60 nm,MgⅠ518.36 nm,NaⅠ589.59 nm)。利用偏最小二乘算法(PLS)建立岩石成分定量分析模型,将48块岩石标本作为训练集进行求解,并用六种国标岩石对模型进行检测,预测岩石Si和Al元素含量,平均误差分别为9.4%和9.6%。  相似文献   

5.
利用激光诱导击穿光谱分析土壤成份   总被引:4,自引:2,他引:2       下载免费PDF全文
 搭建了一套激光诱导击穿光谱实验装置,并通过配置特定样品,开展了一系列激光诱导击穿光谱探测实验。根据含有不同质量分数的同种元素样品的激光诱导击穿光谱实验结果,获得元素质量分数与谱线强度的关系曲线(定标曲线)。对中南民族大学附近的土壤进行激光诱导击穿光谱实验,发现土壤中含有Mg,Ca,Na等18种元素,对河南云台山茱萸峰岩石的激光诱导击穿光谱实验结果仅获得Fe,Mg,Ca 3种金属元素。比较这2种实际样品的激光诱导击穿光谱结果表明,检测样品的物理结构影响激光诱导光谱的实验结果。  相似文献   

6.
利用Nd ∶YAG脉冲激光器(波长:1064 nm)作为光源,在实验室自然大气环境下诱导产生土壤激光等离子体,通过等离子体原子发射光谱法定量分析了国家标准土壤样品中元素Cr的含量.实验上研究了在最佳实验条件下土壤中Cr的LIBS分析谱线,测定了Cr元素的定标曲线.实验结果表明,Cr元素浓度在(60—400)×10-6范围内,元素含量与光谱线强度之间有较好的线性关系;元素Cr浓度分析测量的相对标准偏差(RSD)为7.89%,定量分析结果与标准值的相对偏差为5.3%,Cr元素的检测限为1 关键词: 土壤污染 定量分析 激光诱导击穿光谱 定标曲线  相似文献   

7.
高勋  杜闯  李丞  刘潞  宋超  郝作强  林景全 《物理学报》2014,63(9):95203-095203
本文基于飞秒激光等离子体丝诱导击穿光谱对土壤重金属Cr元素含量进行了实验研究.利用荧光法对等离子体丝的长度进行测量,给出了在不同焦距聚焦透镜作用下土壤中Cr425.5 nm的谱线强度空间分布,实验给出了Cr元素的定标曲线.实验结果表明,土壤中Cr元素浓度分析测量的相对标准偏差小于5%,土壤中重金属Cr元素的检测极限为7.85 ppm.表明飞秒激光等离子体丝诱导击穿光谱技术在土壤重金属Cr元素含量的定量探测方面是完全可行的.  相似文献   

8.
研究了应用激光感生击穿光谱技术对燃煤进行元素快速定量分析的可行性。介绍了用于激光感生击穿光谱技术定量分析的定标曲线方法,并以5种煤样作为实验对象,选取激光击穿煤粉时碳元素505.2nm原子发射谱线为分析谱线,定量分析了延迟时间分别为0.8μs,1.2μs,1.6μs,2.0μs和2.4μs时煤粉中的含碳量,将测量结果与元素分析仪测量结果比较,延迟时间为1.6μs时测量误差最小。根据等离子体发射机制分析了延迟时间对定量分析的影响。实验结果表明:激光感生击穿光谱技术的分析精度较高,可望用于煤质特性快速检测。  相似文献   

9.
利用激光诱导击穿光谱定量分析了铝合金中多种元素的成分。采用Nd∶YAG脉冲激光器,在空气环境下烧蚀铝合金固体样品获得等离子体。利用多通道光栅光谱仪和CCD检测器对200~980 nm波长范围的光谱进行同时检测。研究了检测时延、激光脉冲能量、元素深度分布对光谱强度的影响,考虑这些因素之后对实验参数进行了优化。在优化的实验参数下对国家标准铝合金样品中的八种元素Si,Fe,Cu,Mn,Mg,Zn,Sn及Ni进行了定标,并利用定标曲线对一种铝合金样品进行了定量分析。实验结果表明,测量结果的相对标准偏差(RSD)最大为5.89%,相对误差在-20.99%~15%范围内,说明对铝合金样品成分进行定量分析,激光诱导击穿光谱是一种有效的光谱分析工具,但是分析结果的准确度仍需要提高。  相似文献   

10.
正交双波长双脉冲的激光剥离—激光诱导击穿光谱技术能够在较少样品烧蚀的前提下获得高的光谱分析灵敏度,因此该技术可以从根本上解决在单脉冲激光诱导击穿光谱技术中空间分辨本领与光谱分析灵敏度之间的矛盾。为了消除在该光谱技术中的实验参数对光谱信号强度及其定量分析结果的影响,实验研究了银饰品中杂质铜的光谱信号与银元素的光谱信号的相关性。研究结果表明:324.75 nm的铜原子辐射线与328.07 nm的银原子辐射线的强度呈很高的线性相关性,因此选择以银328.07 nm的光谱线作为内标线,采用内标法就可以消除双光束激光的空间几何配置以及剥离激光脉冲能量等实验参数对铜原子辐射信号的影响,从而可以采用正交双波长双脉冲激光剥离——激光诱导击穿光谱技术开展银饰品中铜杂质含量的定量分析。选择银328.07 nm的光谱线作为内标线,基于内标法建立了铜的校正曲线。当激光烧蚀坑洞直径约为17 μm时, 当前实验条件下银饰品中铜元素的检出限可以达到44 ppm。  相似文献   

11.
采用激光诱导击穿光谱(LIBS)技术定量分析缅甸翡翠中Fe元素的浓度。选择Fe元素的275.57 nm光谱线作为定量分析谱线,选取Si元素的288.17 nm光谱线作为内标谱线,选取12个缅甸翡翠样品作为研究对象,以其中9个样品绘制了传统定标法和内定标法的Fe元素定标曲线,并将定标曲线用于3个检验样品的Fe含量的实际预测。实验结果表明,采用传统定标方法时,定标样品光谱强度的相对标准偏差(RSD)在1.4%~8.3%之间,所建立的Fe元素浓度含量定标曲线的拟合相关系数R2为0.979,使用该方法建立的定标曲线对3个检验样品中Fe元素含量进行测定,最大相对误差为10.6%;而采用内定标法时,定标样品光谱强度的比值(IFe/ISi)的相对标准偏差(RSD)在0.9%~5.7%之间,Fe的拟合相关系数R2达到0.989,样品中Fe元素的测定相对误差均可降低到7%以下。结果证明,利用内定标法定量分析翡翠中Fe的含量比传统定标法相对误差更小,采用LIBS技术结合内定标法更适于缅甸翡翠样品中Fe元素定量分析。  相似文献   

12.
钢铁中钒、钛元素的激光诱导击穿光谱定量检测   总被引:1,自引:0,他引:1  
采用激光诱导击穿光谱(LIBS)技术测量钢铁中钒、钛元素的含量。选取V Ⅰ 440.85 nm和Ti Ⅰ 334.19 nm作为定量分析谱线、基体元素谱线Fe Ⅰ 438.35 nm作为内标谱线,分别建立了基本定标法和内定标法的钢铁样品中V和Ti含量的光谱分析定标曲线,并将它们用于检验样品的定量分析。研究表明,V和Ti基本定标曲线的拟合相关系数R2分别为0.987 5和0.990 9,对检验样品中V和Ti元素的测定相对误差最大分别为11.1%和4.0%;而采用内定标法时,V和Ti的拟合相关系数R2分别达到0.995 2和0.992 1,对检测样品中V和Ti元素的测定相对误差均可降低到4.0%以下。结果证明,采用内定标的激光诱导击穿光谱分析方法更适于钢铁样品中钒、钛含量的测定。  相似文献   

13.
激光诱导煤粉发射光谱的基体效应研究   总被引:2,自引:0,他引:2  
激光诱导发射光谱分析技术是目前正被广泛发展的一种元素定量检测手段,其分析结果的准确性与精度和分析基体的物理化学特性紧密相关.本文采用波长为1064nm的激光烧蚀煤样,以中阶梯光谱仪和ICCD分析诱导产生的等离子体发射光谱.通过试验基体的不同形态特性对各种元素定量分析特征光谱的强度、稳定性以及元素分析探测限的影响,研究激光诱导煤粉发射光谱的基体效应规律,并从激光等离子体形成的理论机制上进行实验分析.研究表明,适中的煤粉颗粒尺寸与样品密度更有利于激光诱导煤粉发射光谱的定量分析.  相似文献   

14.
在炼钢中合金浓度的检测和控制对产品质量影响很大,激光诱导击穿光谱(laser induced breakdown spectroscopy, LIBS)技术具有快速、非接触、无需制样等特点,非常适合应用于合金成分的在线分析。但是由于合金中的C, S, P元素的成分含量都很低,其原子发射谱线极易淹没在复杂的铁元素特征谱线之中,造成这些重要元素在线定量分析困难。以合金钢标准光谱样品为研究对象,获取激光诱导击穿光谱数据,采用定标曲线法(calibration curve, CC)和偏最小二乘法(partial least squares, PLS),对合金钢样品的主量和微量元素进行定量分析。比较两种方法的定标结果得出:对于主量元素,PLS方法的定量分析水平优于传统的CC法;更重要的是对于微量元素,由于特征谱线极弱,CC法无法得出定量结果,而PLS法仍然具有良好的定量分析能力。同时,将PLS法回归模型特征谱线处的回归系数与原始有背景干扰的光谱强度数据进行比较,阐述了LIBS数据定量分析中PLS方法的优势。结果表明,在激光诱导击穿光谱合金成分分析中,PLS方法适合用于C等微量元素的定量分析。  相似文献   

15.
杨雪  李苏宇  姜远飞  陈安民  金明星 《物理学报》2019,68(6):65201-065201
研究了不同温度下聚焦透镜到样品表面距离对激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)强度的影响,使用Nd:YAG脉冲激光激发样品并产生等离子体,探测的等离子体发射的光谱线为Cu(Ⅰ)510.55 nm,Cu(Ⅰ)515.32 nm和Cu(Ⅰ)521.82 nm.使用透镜的焦距为200 mm,测量的聚焦透镜到样品表面距离的范围为170—200 mm,样品温度从25℃升高到270℃,激光能量为26 mJ.总体上,升高样品温度能有效地提高LIBS光谱的辐射强度.在25℃和100℃时,光谱强度随着聚焦透镜到样品表面距离的增加而单调增加;在样品温度更高(150, 200, 250和270℃)时,光谱强度随着距离的增加出现先升高而后又降低的变化.同时,在样品接近焦点附近,随着样品温度的升高,LIBS光谱强度的变化不明显,还可能出现光谱强度随着样品温度升高而降低的情况,这在通过升高样品温度来提高LIBS光谱强度中特别值得我们注意.为了更进一步了解这两个条件对LIBS的影响,计算了等离子体温度和电子密度,发现等离子体温度和电子密度的变化与光谱强度的变化几乎一致,更高样品温度下产生的等离子体温度和电子密度更高.  相似文献   

16.
采用激光诱导击穿光谱对铁(Fe)合金中的钛元素(Ti)的含量进行测量。实验中激光器在最大能量输出(50 mJ),延时为1 μs时光谱信号的强度值最大。在此条件下,分别使用传统定标法和Fe Ⅰ 438.35 nm及Fe Ⅰ 427.12 nm两条谱线的内标法对铁合金中的Ti进行定量分析。内标法得到的拟合相关系数(r)分别为0.997 8和0.993 9,优于传统法得到的r(0.956 3)。提出了一种双谱线平均内标法,拟合得出r为0.998 4。同时,在浓度为0.063%~1.9%的范围内传统定标法测量的相对误差为23.7%,内标法的相对误差为6.0%,采用平均内标法后相对误差降为3.9%。最后,通过测量的Ti光谱计算了激光能量为50 mJ时所产生的等离子体温度为6 654.3 K,电子密度为1.072×1022 cm-3,并讨论了激光能量与烧蚀产生等离子体温度之间的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号