首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张轶杰  唐春梅  高凤志  王成杰 《物理学报》2014,63(14):147401-147401
采用密度泛函理论中的广义梯度近似研究C6Li吸附H2O分子并将之进行分解的催化过程. 几何优化发现:Li原子最稳定的吸附位置是位于C 原子顶位上方. 研究表明,第一个H2O 分子吸附在C6Li上需要克服1.77 eV的能量势垒,然后分解为H和OH且与Li原子成键. 当吸附第二个H2O分子时,第二个H2O分子需要克服1.2 eV的能量势垒分解为H和OH,其中H与Li原子上的H原子结合成H2,OH则替代Li 原子上的H结合在Li原子上. 因此C6Li 可以作为催化剂将H2O分子进行分解得到H2. 分析可知:C6Li主要是通过Li原子与H2O之间形成的偶极矩作用来吸附H2O 分子,与C60Li12 的储氢机制类似. 研究结果可为储氢材料的制备提供一个新的思路. 关键词: 6')" href="#">C6 Li 2O')" href="#">H2O 密度泛函理论  相似文献   

2.
祁鹏堂  陈宏善 《物理学报》2015,64(23):238102-238102
利用密度泛函理论研究了Li原子修饰的C24团簇的储氢性能. Li原子在C24团簇表面的最佳结合位是五元环. Li原子与C24团簇之间的作用强于Li原子之间的相互作用, 能阻止它们在团簇表面发生聚集. 当Li原子结合到C24表面时, 它们向C原子转移电子后带正电荷. 当氢分子接近这些Li原子时, 在电场作用下发生极化, 通过静电相互作用吸附在Li原子周围. 在Li修饰的C24复合物中, 每个Li原子能吸附两到三个氢分子, 平均吸附能处于0.08到0.13 eV/H2范围内. C24Li6能吸附12个氢分子, 储氢密度达到6.8 wt%.  相似文献   

3.
基于第一性原理深入研究了碱金属原子(Li,Na,K)修饰的多孔石墨烯(PG)体系的储氢性能,并且通过从头算分子动力学模拟了温度对Li-PG吸附的H2分子稳定性的影响.研究结果表明,PG结构的碳环中心是碱金属原子最稳定的吸附位置,PG单胞最多可以吸附4个碱金属原子,Li原子被束缚最强,金属原子间无团聚的倾向;H2分子通过极化机制吸附在碱金属修饰的PG结构上,每个金属原子周围最多可以稳定地吸附3个H2分子;Li-PG对H2分子的吸附最强(平均吸附能为-0.246 eV/H2),Na-PG对H2分子的吸附较弱(平均吸附能为-0.129 eV/H2),K-PG对H2分子的吸附最弱(平均吸附能为-0.056 eV/H2),不适合用做储氢材料;在不考虑外界压强且温度为300 K的情况下,Li-PG结构可稳定地吸附9个H2分子,储氢量为9.25 wt.%;在400 K时,有7个吸附H2分子脱离Li-PG的束缚,在600-700 K的范围内,吸附H2分子全部脱离了Li-PG体系的束缚.  相似文献   

4.
周晓锋  方浩宇  唐春梅 《物理学报》2019,68(5):53601-053601
本文使用密度泛函理论中的广义梯度近似对扩展三明治结构graphene-2Li-graphene的几何结构、电子性质和储氢性能进行计算研究.计算得知:位于单层石墨烯中六元环面心位上方的单个Li原子与基底之间的结合能最大(1.19 eV),但小于固体Li的实验内聚能(1.63 eV),然而,在双层石墨烯之间的单个Li原子与基底的结合能增加到3.41 eV,远大于固体Li的实验内聚能,因此位于双层石墨烯之间的多个Li原子不会成簇,有利于进一步储氢.扩展三明治结构graphene-2Li-graphene中每个Li原子最多可以吸附3个H_2分子,储氢密度高达10.20 wt.%,超过美国能源部制定的5.5 wt.%的目标.该体系对1—3个H_2分子的平均吸附能分别为0.37,0.17和0.12 eV,介于物理吸附和化学吸附(0.1—0.8 eV)之间,因此该体系可以实现常温常压下对H_2的可逆吸附.通过对态密度分析可知,每个Li原子主要通过电场极化作用吸附多个H_2分子.动力学和巨配分函数计算表明graphene-2Li-graphene结构对H_2分子具有良好的可逆吸附性能.该研究可以为开发良好的储氢材料提供一个好的研究思路,为实验工作提供理论依据.  相似文献   

5.
利用密度泛函理论研究了H2分子在Li掺杂Al7C+团簇上的吸附.对于Al7C+团簇,H2分子的吸附能仅为-0.017eV,掺杂Li原子到Al7C+团簇可以明显增强对H2分子的吸附.吸附一个H2分子时吸附能可以达到-0.151eV,吸附四个H2分子的平均吸附能为-0.073eV.根据自然键轨道分析,电荷从Li原子向Al7C+团簇转移,带正电的Li离子极化H2分子并且增强了H2分子与Al7CLi+团簇之间的相互作用.  相似文献   

6.
本文利用密度泛函理论的B3LYP/6-31G(d, p)和组态相互作用的QCISD/6-31G(d, p)研究了Al6Si+和Al6SiLi+团簇的几何和电子结构及其对H2分子的吸附,两种不同方法计算的H2分子在团簇上的吸附能非常一致。H2分子在Al6Si+团簇上的吸附能仅为-0.018 eV,Al6Si+团簇中掺杂Li原子可以明显增强其对H2分子的吸附。Al6SiLi+团簇吸附一个H2分子的吸附能可以达到-0.157 eV,吸附五个H2分子的平均吸附能为-0.088 eV。态密度和自然键轨道分析表明,电荷从Li原子向Si原子转移,H2分子在带正电的Li离子产生的电场中发生极化,从而在静电相互作用下吸附在Li原子周围。  相似文献   

7.
利用密度泛函理论研究锂原子修饰线型碳原子链团簇Li2Cm(m=2—8)的结构及其储氢性能. 结果表明, Li原子可键合于碳链团簇的两端,Li原子本身不发生团聚,氢在Li2Cm (m=2—8)中能以分子形式吸附,每一个Li原子最多可吸附5个氢分子,氢分子的平均吸附能为0.460 ~ 2.276 kcal.mol-1. 其中Li原子修饰C2团簇的质量储氢分数最大,为34.72 wt%,表明了它在常温常压条件下作为储氢材料的可行性.  相似文献   

8.
摘要: 利用密度泛函理论研究了H2分子在Li掺杂Al7C+团簇上的吸附.对于Al7C+团簇,H2分子的吸附能仅为-0.017eV,掺杂Li原子到Al7C+团簇可以明显增强对H2分子的吸附.吸附一个H2分子时吸附能可以达到-0.151eV,吸附四个H2分子的平均吸附能为-0.073eV.根据自然键轨道分析,电荷从Li原子向Al7C+团簇转移,带正电的Li离子极化H2分子并且增强了H2分子与Al7CLi+团簇之间的相互作用.  相似文献   

9.
利用密度泛函理论研究锂原子修饰线型碳原子链团簇Li2Cm(m=2-8)的结构及其储氢性能.结果表明,Li原子可键合于碳链团簇的两端,Li原子本身不发生团聚,氢在Li2Cm(m=2-8)中能以分子形式吸附,每一个Li原子最多可吸附5个氢分子,氢分子的平均吸附能为0.460~2.276 kcal·mol-1.其中Li原子修饰C2团簇的质量储氢分数最大,为34.72 wt%,表明了它在常温常压条件下作为储氢材料的可行性.  相似文献   

10.
采用第一性原理方法研究了NH3分子在LiH(100)晶面的表面吸附情况. 通过研究LiH(100) /NH3体系的吸附位置、吸附能和电子结构,发现NH3分子在Li3N (100)晶面主要是化学吸附,初始位置为NH3分子中N-H键在Li顶位时失去一个H原子,并在LiH(110)面形成NH2基,其吸附能为0.511 eV,属于强化学吸附,吸附作用最强. 此时NH2基与附近H原子和Li原子之间为离子键作用,NH2基中N—H键为共价键;NH3分子中另一个H原子与LiH表面的一个H原子形成一个H2分子逸出表面. H2分子中H-H键为明显的共价键.  相似文献   

11.
采用密度泛函方法对锂原子修饰线型硼原子链团簇Li2Bn(n=2~8)的结构及其储氢性能进行理论研究. 结果显示, Li原子可键合于硼链团簇的两端,氢能以分子形式吸附在Li原子周围, 每一个Li原子最多可吸附4个氢分子, 氢分子的平均吸附能为2.020 ~ 2.832 kcal.mol-1. 其中Li原子修饰B2小团簇的质量储氢分数最大,为31.24 wt%,表明在常温常压条件下它有可能成为一种潜在的储氢媒介.  相似文献   

12.
利用密度泛函理论研究锂原子修饰线型碳原子链团簇Li2Cm(m=2-8)的结构及其储氢性能.结果表明, Li原子可键合于碳链团簇的两端,Li原子本身不发生团聚,氢在Li2 Cm ( m=2-8)中能以分子形式吸附,每一个Li原子最多可吸附5个氢分子,氢分子的平均吸附能为0.460~2.276 kcal·mol^-1.其中Li原子修饰C2团簇的质量储氢分数最大,为34.72 wt%,表明了它在常温常压条件下作为储氢材料的可行性.  相似文献   

13.
利用杂化密度泛函B3LYP方法, 在6-311+G(d, p)基组水平上对Si6和Li修饰的Si6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究. 结果表明, Si6团簇最低能量构型为笼型结构, 纯Si6团簇不能有效吸附氢分子. Li原子的引入显著改善了Si6团簇的储氢能力. 以两个Li原子端位修饰Si6团簇为载体, 其氢分子的平均吸附能为1.692~2.755 kcal/mol, 每个Li原子周围可以有效吸附五个氢分子, 储氢密度可达9.952wt%. 合适的吸附能和较高储氢密度表明Li修饰Si6团簇有望成为理想的储氢材料.  相似文献   

14.
利用杂化密度泛函B3LYP方法,在6-311+G(d,p)基组水平上对Si_6和Li修饰的Si_6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究.结果表明,Si_6团簇最低能量构型为笼型结构,纯Si_6团簇不能有效吸附氢分子.Li原子的引入显著改善了Si_6团簇的储氢能力.以两个Li原子端位修饰Si_6团簇为载体,其氢分子的平均吸附能为1.692~2.755 kcal/mol,每个Li原子周围可以有效吸附五个氢分子,储氢密度可达9.952 wt%.合适的吸附能和较高储氢密度表明Li修饰Si_6团簇有望成为理想的储氢材料.  相似文献   

15.
氯化物熔盐作为传热储热工质,在太阳能热发电系统中应用时会造成金属管道的腐蚀和失效,严重威胁系统的运行安全.本文采用第一性原理方法,构建了不同腐蚀介质(Cl原子、H原子、O原子、OH基团以及H2O分子)在γ-Fe(111)表面的吸附微观物理模型,并阐明了其吸附性能.结果发现:Cl原子和H原子在γ-Fe(111)表面最稳定的吸附点位为Fcc位,O原子和OH基团最稳定的吸附位点为Hcp位,H2O分子最稳定的吸附位点位Top位.另外,O原子在γ-Fe(111)表面的吸附能和得到的电荷数最大,分别为-8.073 eV和0.53.这为管道的腐蚀研究提供了理论支撑.  相似文献   

16.
采用密度泛函方法对锂原子修饰线型硼原子链团簇Li_2B_n(n=2~8)的结构及其储氢性能进行理论研究.结果显示,Li原子可键合于硼链团簇的两端,氢能以分子形式吸附在Li原子周围,每一个Li原子最多可吸附4个氢分子,氢分子的平均吸附能为2.020~2.832 kcal.mol~(-1).其中Li原子修饰B2小团簇的质量储氢分数最大,为31.24 wt%,表明在常温常压条件下它有可能成为一种潜在的储氢媒介.  相似文献   

17.
研究电场中MgO分子与H2的相互作用是探索MgO材料储氢性能的基础。在B3LYP/6-31G**水平上研究了电场中H2在MgO分子上的吸附行为。结果给出电场中单个H2在Mg/O上的吸附能由无电场时-0.021/-0.099eV提高到场强为0.005a.u.时的-0.037/-0.139 eV。H2吸附在O离子上时,电场效应更显著。电场中MgO分子最多能吸附10个H2,相应的质量密度达33wt%。表明电场诱导MgO材料吸附H2是一种具有潜力的储氢方法。通过电子结构分析讨论了电场中MgO分子储氢的机理。  相似文献   

18.
利用密度泛函理论研究了低覆盖度下CO分子在Ni(110)表面的吸附结构和电子态。研究结果表明:在低覆盖度情况下, CO分子优先垂直吸附在短桥位,其次是顶位和长桥位。垂直短桥位吸附、顶位吸附相应的振动频率分别是1850.52 cm-1、1998.08cm-1。态密度的研究结果表明:CO分子和Ni原子在-10 eV -8 eV,-8 eV—-6 eV及1 eV -5 eV能量范围内发生了杂化作用。-10ev -8ev能量范围内的杂化主要来源于C、O原子的s轨道、pz轨道与Ni原子s、p、d轨道的杂化作用。-8ev—-6ev能量范围内的杂化作用主要来源于C、O原子的py、 px轨道与Ni原子d、s轨道的杂化作用。轨道间的杂化作用是吸附作用的主要来源。 我们计算的吸附位置与相应的振动频率与相关实验结果基本一致。  相似文献   

19.
采用第一性原理方法研究了NH3分子在LiH(100)晶面的表面吸附情况.通过研究LiH(100)/NH3体系的吸附位置、吸附能和电子结构,发现NH3分子在LiH(100)晶面主要是化学吸附,初始位置为NH3分子中N-H键在Li顶住时失去一个H原子,并在LiH(100)面形成NH2基,其吸附能为0.511 eV,属于强化学吸附,吸附作用最强.此时NH2基与附近H原子和Li原子之间为离子键作用,NH2基中N—H键为共价键;NH3分子中另一个H原子与LiH表面的一个H原子形成一个H2分子逸出表面.H2分子中H-H键为明显的共价键.  相似文献   

20.
基于密度泛函理论的第一性原理计算方法,研究了H2O分子在五边形BCN上的吸附与解离过程.研究结果表明,五边形BCN结构的B原子是H2O分子的最稳定的活性吸附位点. H2O分子在该活性位点极易解离,其初步解离过程为放热反应且分解势垒仅为0.191 eV,并形成稳定的OH/H产物.深入研究发现,H2O分子初步解离后的五边形BCN表面,可直接分解后续吸附的H2O分子.该研究结果为五边形BCN对H2O分子的吸附解离机制提供理论借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号