首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio calculations have been carried out on low-lying singlet and triplet states of TeO2 at different levels of theory with basis sets of up to the augmented-polarized valence-quintuple-zeta quality. Equilibrium geometrical parameters, harmonic vibrational frequencies, and relative electronic energies of the X1A1, 1B1, 1B2, 1A2, 3A1, 3B1, 3B2, and 3A2 states of TeO2 have been calculated. Potential energy functions (PEFs) of the X1A1 and the (1)1B2 states were computed at the complete-active-space self-consistent-field multireference configuration interaction level, with a basis set of augmented-polarized valence-quadruple-zeta quality. Franck-Condon factors (FCFs) for the electronic transition between the X1A1 and (1)1B2 states of TeO2 were calculated with the above-mentioned ab initio PEFs. The (1)1B2 <-- X1A1 absorption spectrum of TeO2 was simulated employing the computed FCFs, which include Duschinsky rotation and anharmonicity, and compared with the recently published laser-induced fluorescence (LIF) spectrum of Hullah and Brown [J. Mol. Spectrosc. 200, 261 (2000)]. The ab initio results and spectral simulation reported here confirm the upper electronic state involved in the LIF spectrum to be the (1)1B2 state of TeO2 and also confirm the vibrational assignments of Hullah and Brown. However, our simulated spectrum suggests that the reported LIF spectrum from 345 to 406 nm represents only a portion of the full (1)1B2 <-- X1A1 absorption spectrum of TeO2, which extends from ca. 406 to 300 nm. Another dye other than the two used by Hullah and Brown is required to cover the 345-300 nm region of the LIF band. Ab initio calculations show strong configuration mixing of the (1)1B2 electronic surface with higher 1B2 states in a region of large TeO bond length (> or = 2.0 A) and OTeO bond angle (> or = 135.0 degrees).  相似文献   

2.
Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 (3)A(")) states of the H(+)+O(2) system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO(2)](+) ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO(+)?OOH(+) are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.  相似文献   

3.
We have studied the potential-energy curves and the spectroscopic constants of the ground and low-lying excited states of NbC by employing the complete active space self-consistent field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified 23 low-lying electronic states of NbC with different spin multiplicities and spatial symmetries within 40,000 cm(-1). At the multireference single and double configuration interaction level of theory the 2sigma+ and 2delta states are nearly degenerated, with the 2delta state located 187 cm(-1) lower than the 2sigma+ state. The estimated spin-orbit splitting for the 2delta state results in a 2delta(3/2) ground state and A 2sigma+ which is placed 650 cm(-1) above the ground state, in reasonable agreement with the experimental result, 831 cm(-1). Our computed spectroscopic constants are in good agreement with experimental values although our results differ from those of a previous density-functional investigation of the excited states of NbC, mainly due to the strong multiconfigurational character of NbC. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.  相似文献   

4.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

5.
The 51 Ω states generated from the 22 Λ - S states of phosphors monofluoride have been investigated using the valence internally contracted multireference configuration interaction method with the Davidson correction and the entirely uncontracted aug-cc-pV5Z basis set. The spin-orbit coupling is computed using the state interaction approach with the Breit-Pauli Hamiltonian. Based on the calculated potential energy curves, the spectroscopic constants of the bound and quasibound Λ - S and Ω states are obtained, and very good agreement with experiment is achieved. Several quasibound states caused by avoided crossings are found. Various curve crossings and avoided crossings are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a(1)Δ, b(1)Σ(+), e(3)Π, g(1)Π, and (3)(3)Π states are analyzed. The intricate couplings among different electronic states are investigated. We propose that the avoided crossing between the A(3)Π(0 +) and b(1)Σ(0+) (+) states may be responsible for the fact that the A(3)Π ν' ≥ 12 vibrational levels can not be observed in experiment. The transition properties of the A(3)Π - X(3)Σ(-) transition are studied, and our computed Franck-Condon factors and radiative lifetimes match the experimental results very well.  相似文献   

6.
Self-consistent-field and multireference single- and double-excitation configuration interaction (CI) calculations have been carried out for various electronic states of the beryllium oxide molecule and their positron-attached counterparts. Particular emphasis is placed on the correlation between the polarity of a given BeO state and the magnitude of the positron binding energy as the internuclear distance is varied. Potential curves are computed for all BeO states that correlate with the first three atomic limits for this system and good agreement is found between the experimental and calculated spectroscopic constants in all cases. The present level of CI treatment is known to underestimate the positron affinities of atoms by at least several tenths of an eV, and this fact needs to be taken into account in evaluating the results for positron binding to molecules. The lowest BeO excited states (3,1Pi) are not found to bind with a positron in the Franck-Condon region due to their comparatively small dipole moments caused by O to Be charge transfer relative to the X 1Sigma+ ground state, which in turn does have a fairly sizeable positron affinity. The situation changes significantly as dissociation proceeds, however, with both 4,2Pi and 2Sigma+ positronic states lying several tenths of an eV lower than their neutral counterparts over a broad range of internuclear distance.  相似文献   

7.
Six new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems have been prepared by solid-state reactions at high-temperatures. Their structures were determined by single-crystal X-ray diffraction studies. AM(3)O(6)(QO(3))(2) (A = K, Rb, M = Nb, Ta, Q = Te; A = K, M = Nb, Q = Se) are isomorphous and their structures feature a 3D network with 1D 4- and 6-MRs tunnels along the a-axis which is composed of 2D layers of corner-sharing MO(6) octahedra bridged by QO(3) groups. The alkali metal ions are located at the above 1D tunnels of 6-MRs. The structure of Cs(3)Nb(9)O(18)(TeO(3))(2)(TeO(4))(2) features a thick Nb-Te-O layer built of corner-sharing NbO(6) octahedra, TeO(3) and TeO(4) groups. The 2D layer of the NbO(6) octahedra with 1D tunnels of 6-MRs along the c-axis are formed by 1D chains of NbO(6) chains along the c-axis and linear Nb(4)O(21) tetramers by corner-sharing. The TeO(3) and TeO(4) groups are grafted on both sides of the niobium-oxide layer via Nb-O-Te or/and Te-O-Te bridges. The caesium(i) ions are located at the above 1D tunnels of 6-MRs. TGA, UV-vis and infrared spectral measurements as well as electronic structure calculations have also been performed.  相似文献   

8.
The importance of vibrational-to-electronic (V-E) energy transfer mediated by spin-orbit coupling in the collisional removal of O2(X 3Sigmag-,upsilon>or=26) by O2 has been reported in a recent communication [F. Dayou, J. Campos-Martinez, M. I. Hernandez, and R. Hernandez-Lamoneda, J. Chem. Phys. 120, 10355 (2004)]. The present work provides details on the electronic properties of the dimer (O2)2 relevant to the self-relaxation of O2(X 3Sigmag-,upsilon>0) where V-E energy transfer involving the O2(a 1Deltag) and O2(b 1Sigmag+) states is incorporated. Two-dimensional electronic structure calculations based on highly correlated ab initio methods have been carried out for the potential-energy and spin-orbit coupling surfaces associated with the ground singlet and two low-lying excited triplet states of the dimer dissociating into O2(X 3Sigmag-)+O2(X 3Sigmag-), O2(a 1Deltag)+O2(X 3Sigmag-), and O2(b 1Sigmag+)+O2(X 3Sigmag-). The resulting interaction potentials for the two excited triplet states display very similar features along the intermolecular separation, whereas differences arise with the ground singlet state for which the spin-exchange interaction produces a shorter equilibrium distance and higher binding energy. The vibrational dependence is qualitatively similar for the three studied interaction potentials. The spin-orbit coupling between the ground and second excited states is already nonzero in the O2+O2 dissociation limit and keeps its asymptotic value up to relatively short intermolecular separations, where the coupling increases for intramolecular distances close to the equilibrium of the isolated diatom. On the other hand, state mixing between the two excited triplet states leads to a noticeable collision-induced spin-orbit coupling between the ground and first excited states. The results are discussed in terms of specific features of the dimer electronic structure (including a simple four-electron model) and compared with existing theoretical and experimental data. This work gives theoretical insight into the origin of electronic energy-transfer mechanisms in O2+O2 collisions.  相似文献   

9.
A new modification of thallium tellurite, beta-Tl(2)TeO(3), has been synthesized by methanolothermal reaction, and its phase transition has been studied by single-crystal X-ray diffraction. At a temperature of 440(10) degrees C an irreversible phase transition from a monoclinic structure (beta-Tl(2)TeO(3): P2(1)/c (No. 14), Z = 4, a = 8.9752(18) A, b = 4.8534(6) A, c = 11.884(2) A, beta = 109.67(2) degrees, V = 487.47(15) A3 at 25 degrees C) to an orthorhombic structure (alpha-Tl(2)TeO(3): Pban (No. 50), Z = 8, a = 16.646(2) A, b = 11.094(2) A, c = 5.2417(8) A, V = 968.0(3) A3 at 25 degrees C) is observed. Both structures are characterized by psi-tetrahedral TeO(3)(2-) anions. In the orthorhombic structure psi-trigonal bipyramidal [TlO(4)] units are found together with psi-tetrahedral [TlO(3)] units whereas in the monoclinic structure the coordination polyhedron around Tl(I) can be best described as a psi-square pyramide, psi-[TlO(4)]. The electronic structure of Tl(2)TeO(3) in both modifications has been studied to explain the influence of the lone pairs. It can be conclusively shown that the minimization of antibonding ns-metal/2p-oxygen interactions is the driving force for "lone pair" distortions which determines the structures of Tl(2)TeO(3).  相似文献   

10.
A new quaternary layered transition-metal oxide, Na2Cu2TeO6, has been synthesized under air using stoichiometric (with respect to the cationic elements) mixtures of Na2CO3, CuO, and TeO2. Na2Cu2TeO6 crystallizes in the monoclinic space group C2/m with a = 5.7059(6) A, b = 8.6751(9) A, c = 5.9380(6) A, beta = 113.740(2) degrees, V = 269.05(5) A3, and Z = 2, as determined by single-crystal X-ray diffraction. The structure is composed of infinity(2)[Cu2TeO6] layers with the Na atoms located in the octahedral voids between the layers. Na2Cu2TeO6 is a green nonmetallic compound, in agreement with the electronic structure calculation and electrical resistance measurement. The magnetic susceptibility shows Curie-Weiss behavior between 300 and 600 K with an effective moment of 1.85(2) muB/Cu(II) and theta(c) = -87(6) K. A broad maximum at 160 K is interpreted as arising from short-range one-dimensional antiferromagnetic correlations. With the aid of the technique of magnetic dimers, the short-range order was analyzed in terms of an alternating chain model, with the surprising result that the stronger intrachain coupling involves a super-superexchange pathway with a Cu-Cu separation of >5 A. The J2/J1 ratio within the alternating chain refined to 0.10(1), and the spin gap is estimated to be 127 K.  相似文献   

11.
The geometries of 1H-7-azaindole and the 1H-7-azaindole(H(2)O)(1-2) complexes and the respective 7H tautomers in their ground and two lowest electronically excited pi-pi(*) singlet states have been optimized by using the second-order approximated coupled cluster model within the resolution-of-the-identity approximation. Based on these optimized structures, adiabatic excitation spectra were computed by using the combined density functional theory/multireference configuration interaction method. Special attention was paid to comparison of the orientation of transition dipole moments and excited state permanent dipole moments, which can be determined accurately with rotationally resolved electronic Stark spectroscopy. The electronic nature of the lowest excited state is shown to change from L(b) to L(a) upon water complexation.  相似文献   

12.
The absorption spectrum of the propargyl radical in the region from 180 to 400 nm is investigated in detail by means of theory. Vertical excitation energies and potential energy surfaces are determined by highly accurate multireference configuration interaction (MRCI) calculations. The vibrational dynamics of several electronic states is studied, and line intensities and positions are calculated with respect to the electronic and vibrational ground state. Four electronic states absorb in the region of interest: 1 2B2, 2 2B1, 2 2B2, and 3 2B1. However, electronic excitations into the 2B2 states are dipole-forbidden from the X 2B1 ground state and corresponding vibronically allowed transitions are shown to be weak. The spectrum is dominated by the strong 2 2B1 <-- 1 2B1 band which is computed in overall good agreement with available experiments. A strong absorption at 242 nm, which has been assigned to propargyl, is not confirmed by the calculations, and only very weak absorptions are found at wavelengths shorter than 280 nm. The present results strongly suggest that the 242 nm feature must be due to a different species.  相似文献   

13.
The syntheses, structures, and characterization of four new lead(II)-tellurium(IV)-oxide halides, Pb(3)Te(2)O(6)X(2) and Pb(3)TeO(4)X(2) (X = Cl or Br) are reported. The materials are synthesized by solid-state techniques, using Pb(3)O(2)Cl(2) or Pb(3)O(2)Br(2) and TeO(2) as reagents. The compounds have three-dimensional structural topologies consisting of lead-oxide halide polyhedra connected to tellurium oxide groups. In addition, the Pb(2+) and Te(4+) cations are in asymmetric coordination environments attributable to their stereoactive lone pair. We also demonstrate that Pb(3)Te(2)O(6)X(2) and Pb(2)TeO(4)X(2) can be interconverted reversibly through the loss or addition of TeO(2). X-ray data: Pb(3)Te(2)O(6)Cl(2), monoclinic, space group C2/m (No. 12), a = 16.4417(11) A, b = 5.6295(4) A, c = 10.8894(7) A, beta = 103.0130(10) degrees, Z = 4; Pb(3)Te(2)O(6)Br(2), monoclinic, space group C2/m (No. 12), a = 16.8911(8) A, b = 5.6804(2) A, c = 11.0418(5) A, beta = 104.253(2) degrees, Z = 4; Pb(3)TeO(4)Cl(2), orthorhombic, space group Bmmb (No. 63), a = 5.576(1) A, b = 5.559(1) A, c = 12.4929(6) A, Z = 4; Pb(3)TeO(4)Br(2), orthorhombic, space group Bmmb (No. 63), a = 5.6434(4) A, b = 5.6434(5) A, c = 12.9172(6) A, Z = 4.  相似文献   

14.
The phenyl radical's electronic structure, magnetic inequivalency, spin Hamiltonian tensor components, and the relative orientation of their principal axes are computed by Neese's coupled-perturbed Kohn-Sham hybrid density functional (CPKS-HDF) technique in a moderate amount of time without resorting to expensive post-Hartree-Fock techniques. The g tensor component values are in excellent agreement with those determined experimentally and differ by less than 370 ppm. The computed hydrogen nuclear hyperfine tensors, A(1H), are also found to be in very good agreement with their experimental counterparts. The correlation of the radical's electronic structure with its g and A numerical values corroborates that it has a 2A(1) ground state. In accordance with our previous studies on the equivalency of planar radicals that possess C(2v) symmetry, the in-plane g and A(1H) principal axes should not be parallel to one another. Consequently, the spatially equivalent ortho (1H(2), 1H(6)) and meta (1H(3), 1H(5)) proton pairs should be magnetically inequivalent. This was confirmed in both the present computations and the simulation of the EPR solid-state spectrum. To the best of our knowledge, this is the first aromatic in-plane sigma-type radical whose magnetic inequivalency is studied both computationally and experimentally. To properly interpret the radical's electronic excitation spectra, the spectroscopy-oriented dedicated difference configuration interaction (SORCI) procedure was employed. Aside from a slight overestimation, the method seems to be capable of reproducing the C(6)H(5)* electronic vertical excitation energies in the range of 0-50,000 cm(-1). These vertical excitations, in conjunction with the corresponding orbit and spin orbit matrix elements, were also used to compute the g tensor components, employing the sum-over-states technique. Due to the limited number of computed roots and excited states, the results were marginally inferior to those obtained using the CPKS-HDF method.  相似文献   

15.
The adiabatic potential energy surfaces for the lowest five electronic states of (3)A" symmetry for the H(+)+O(2) collision system have been obtained at the multireference configuration interaction level of accuracy using Dunning's correlation consistent polarized valence triple zeta basis set. The radial nonadiabatic coupling terms and the mixing angle between the lowest two electronic states (1 (3)A" and 2 (3)A"), which adiabatically correlate in the asymptotic limit to H((2)S)+O(2) (+)(X (2)Pi(g)) and H(+)+O(2)(X (3)Sigma(g)(-)), respectively, have been computed using ab initio procedures at the same level of accuracy to yield the corresponding quasidiabatic potential energy matrix. The computed strengths of the vibrational coupling matrix elements reflect the trend observed for inelastic vibrational excitations of O(2) in the experiments at collision energy of 9.5 eV. The quantum dynamics has been preformed on the newly obtained coupled quasidiabatic potential energy surfaces under the vibrational close-coupling rotational infinite-order sudden framework at the experimental collision energy of 9.5 eV. The present theoretical results for vibrational elastic/inelastic excitations of O(2) are in overall good agreement with the available experimental data obtained from the proton energy-loss spectra in molecular beam experiments [F. A. Gianturco et al., J. Phys. B 14, 667 (1981)]. The results for the complementary charge transfer processes are also presented at this collision energy.  相似文献   

16.
The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multiconfiguration self-consistent field followed by multireference configuration interaction methods that included up to 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38,000 cm(-1). We find two very closely low-lying electronic states for RuC, viz., 1Sigma+ and 3Delta with the 1Sigma+ being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound 1Sigma+ state with a large dipole moment which is most likely the experimentally observed ground state and an energetically close 3Delta state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18,000 cm(-1) agree quite well with those of the corresponding observed states.  相似文献   

17.
18.
The spin lattice model for the spin-gapped layered magnetic solids Na3Cu2SbO6 and Na2Cu2TeO6 was examined by evaluating the three spin exchange interactions of their Cu2MO6 (M = Sb, Te) layers in terms of spin dimer analysis based on extended Hückel tight binding calculations and mapping analysis based on first principles density functional theory electronic band structure calculations. For both compounds, our calculations show that the two strongest spin exchange interactions, that is, the Cu-O...O-Cu super-superexchange (J2) and the Cu-O-Cu superexchange (J1) interactions, form alternating chains that interact weakly through the Cu-O-Cu superexchange (J3) interactions. The dominant one of the three spin exchange interactions is J2, and it is antiferromagnetic in agreement with the fact that both of the compounds are spin gapped. For Na3Cu2SbO6 and Na2Cu2TeO6, the superexchange J1 is calculated to be ferromagnetic, hence, leading to the alternating chain model in which antiferromagnetic and ferromagnetic spin exchange interactions alternate. This picture does not agree with the recent experimental analysis, which showed that the temperature-dependent magnetic susceptibilities of both compounds should be described by the alternating chain model in which two antiferromagnetic spin exchange interactions of different strengths alternate.  相似文献   

19.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

20.
Ab initio study of excitation energies and oscillator strengths for absorption towards the (3)P(1) and (1)P(1) states of the Bi(3+) ion has been performed for the Bi(3+) ion in gas phase and as a dopant of the cubic elpasolite Cs(2)NaYCl(6) and the yttria Y(2)O(3) crystal using the ab initio embedded-cluster method. The ground and excited states were computed with a relativistic spin-orbit configuration interaction approach suited for heavy elements. Electron correlation was treated in the scalar relativistic scheme with perturbative, variational, and coupled-cluster methods. Intermediate coupling is included via an effective-Hamiltonian based spin-orbit configuration interaction approach. Small-core (60 electrons) and large-core (78 electrons) relativistic effective core potentials (ECPs) have been used to describe the bismuth ion. The best match with experiment was obtained with the small-core ECP. The accuracy of excitation energies strongly depends on the electron correlation method used. The agreement between experimental data and the results obtained using second-order multiconfigurational perturbation theory is greatly improved with the shifted zeroth-order Hamiltonian proposed by Ghido et al. [Chem. Phys. Lett. 396, 142 (2004)]. Although quite time consuming, coupled-cluster and variational methods yield good agreement with experimental data. The first absorption band recorded for the doped elpasolite crystal is positioned with an excellent accuracy while the computed energy of the second absorbing manifold is in poorer agreement with experimental data. This suggests that interactions with neglected close-lying excited states with a ligand-to-metal charge transfer character may be significant. Calculations of the spectrum of Bi(3+) doping yttria in both the S(6) and C(2) site symmetries indicate that the absorbing manifold arises from electronic excitations localized on the Bi(3+) doping ion with main triplet 6s6p character. Our results predict the first absorbing peak to lie about 0.5 eV lower for the S(6) sites than for the C(2) site, thus attributing the violet and the green emission wavelengths to the S(6) and C(2) sites, respectively. A subsequent study of Stokes shift and emission wavelength should hopefully lead to a final assignment of the measured excitation spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号