首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we suggest a new vertex interpolation algorithm to improve an existing cell-centered finite volume scheme for nonlinear diffusion problems on general meshes. The new vertex interpolation algorithm is derived by applying a special limit procedure to the well-known MPFA-O method. Since the MPFA-O method for 3D cases has been addressed in some studies, the new vertex interpolation algorithm can be extended to 3D cases naturally. More interesting is that the solvability of the corresponding local system is proved under some assumptions. Additionally, we modify the edge flux approximation by an edge-based discretization of diffusion coefficient, and thus the improved scheme is free of the so-called numerical heat-barrier issue suffered by many existing cell-centered or hybrid schemes. The final scheme allows arbitrary continuous or discontinuous diffusion coefficients and can be applicable to arbitrary star-shaped polygonal meshes. A second-order convergence rate for the approximate solution and a first-order accuracy for the flux are observed in numerical experiments. In the comparative experiments with some existing vertex interpolation algorithms, the new algorithm shows obvious improvement on highly distorted meshes.  相似文献   

2.
We prove that the ENO reconstruction and ENO interpolation procedures are stable in the sense that the jump of the reconstructed ENO point values at each cell interface has the same sign as the jump of the underlying cell averages across that interface. Moreover, we prove that the size of these jumps after reconstruction relative to the jump of the underlying cell averages is bounded. Similar sign properties and the boundedness of the jumps hold for the ENO interpolation procedure. These estimates, which are shown to hold for ENO reconstruction and interpolation of arbitrary order of accuracy and on nonuniform meshes, indicate a remarkable rigidity of the piecewise polynomial ENO procedure.  相似文献   

3.
This paper deals with the singularly perturbed initial value problem for quasilinear first-order delay differential equation depending on a parameter. A numerical method is constructed for this problem which involves an appropriate piecewise-uniform meshes on each time subinterval. The difference scheme is shown to converge to the continuous solution uniformly with respect to the perturbation parameter. Some numerical experiments illustrate in practice the result of convergence proved theoretically.  相似文献   

4.
Most of the standard papers about the WENO schemes consider their implementation to uniform meshes only. In that case the WENO reconstruction is performed efficiently by using the algebraic expressions for evaluating the reconstruction values and the smoothness indicators from cell averages. The coefficients appearing in these expressions are constant, dependent just on the scheme order, not on the mesh size or the reconstruction function values, and can be found, for example, in Jiang and Shu (J Comp Phys 126:202–228, 1996). In problems where the geometrical properties must be taken into account or the solution has localized fine scale structure that must be resolved, it is computationally efficient to do local grid refinement. Therefore, it is also desirable to have numerical schemes, which can be applied to nonuniform meshes. Finite volume WENO schemes extend naturally to nonuniform meshes although the reconstruction becomes quite complicated, depending on the complexity of the grid structure. In this paper we propose an efficient implementation of finite volume WENO schemes to nonuniform meshes. In order to save the computational cost in the nonuniform case, we suggest the way for precomputing the coefficients and linear weights for different orders of WENO schemes. Furthermore, for the smoothness indicators that are defined in an integral form we present the corresponding algebraic expressions in which the coefficients obtained as a linear combination of divided differences arise. In order to validate the new implementation, resulting schemes are applied in different test examples.   相似文献   

5.
We propose a new nonlinear positivity‐preserving finite volume scheme for anisotropic diffusion problems on general polyhedral meshes with possibly nonplanar faces. The scheme is a vertex‐centered one where the edge‐centered, face‐centered, and cell‐centered unknowns are treated as auxiliary ones that can be computed by simple second‐order and positivity‐preserving interpolation algorithms. Different from most existing positivity‐preserving schemes, the presented scheme is based on a special nonlinear two‐point flux approximation that has a fixed stencil and does not require the convex decomposition of the co‐normal. More interesting is that the flux discretization is actually performed on a fixed tetrahedral subcell of the primary cell, which makes the scheme very easy to be implemented on polyhedral meshes with star‐shaped cells. Moreover, it is suitable for polyhedral meshes with nonplanar faces, and it does not suffer the so‐called numerical heat‐barrier issue. The truncation error is analyzed rigorously, while the Picard method and its Anderson acceleration are used for the solution of the resulting nonlinear system. Numerical experiments are also provided to demonstrate the second‐order accuracy and well positivity of the numerical solution for heterogeneous and anisotropic diffusion problems on severely distorted grids.  相似文献   

6.
In this paper, we introduce a nonconforming Nitsche's extended finite element method (NXFEM) for elliptic interface problems on unfitted triangulation elements. The solution on each side of the interface is separately expanded in the standard nonconforming piecewise linear polynomials with the edge averages as degrees of freedom. The jump conditions on the interface and the discontinuities on the cut edges (the segment of edges cut by the interface) are weakly enforced by the Nitsche's approach. In the method, the harmonic weighted fluxes are used and the extra stabilization terms on the interface edges and cut edges are added to guarantee the stability and the well conditioning. We prove that the convergence order of the errors in energy and $L^2$ norms are optimal. Moreover, the errors are independent of the position of the interface relative to the mesh and the ratio of the discontinuous coefficients. Furthermore, we prove that the condition number of the system matrix is independent of the interface position. Numerical examples are given to confirm the theoretical results.  相似文献   

7.
本文对物流运输网络多目标最短路问题进行了研究。提出了一种求解多目标最短路问题的目标集成方法和对集成后目标函数求解的扩展标号法。在将多目标转化为单目标时,综合考虑了每个目标的边缘评价和所有目标的整体评价因素,通过对每个目标的权重分配将决策者的偏好充分体现到决策过程中,采用广义的模糊目标集成算子形成了相应的折衷规划模型。最后,通过实例对本文所提方法进行了说明。  相似文献   

8.
韩世莲 《运筹学学报》2016,20(3):121-128
研究了物流运输网络SUM-MIN双目标路径问题. 基于模糊规划方法提出了一种求解SUM-MIN双目标路径问题的目标函数集成方法,以及集成后目标函数的扩展标号法. 在将双目标转化为单目标时,综合考虑了每个目标的边缘评价和两个目标的整体评价因素,通过对每个目标分配的权重将决策者的偏好充分体现到决策过程中,采用广义的模糊目标集成算子形成了相应的折衷规划模型. 最后,通过实例对所提方法进行了说明.  相似文献   

9.
10.
一种自由界面追踪的模板化VOF方法   总被引:1,自引:0,他引:1  
发展了一种模板化的volume-of-fluid (VOF)方法.该方法根据自由界面的法向建立一个模板,然后由已知的网格单元上的流体体积比值确定出自由界面的准确位置,使得在二维情形下一个网格单元被自由界面切割的形式只有3种.另一方面,引入了单元边流体占有长度的概念,在此基础上建立了一个统一的流体占有面积模型,可以使得自由界面输运方程的求解有统一的算法.该方法不受网格单元形式的限制,并且容易推广到三维情形.算例表明,该方法能保证自由界面的跟踪精度.  相似文献   

11.
A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.  相似文献   

12.
Fluid-structure interaction problems arise in many fields of application such as flows around elastic structures and blood flow in arteries. The method presented in this paper for solving such a problem is based on a reduction to an equation at the interface, involving the so-called Steklov-Poincaré operators. This interface equation is solved by a Newton iteration, for which directional derivatives involving shape derivatives with respect to the interface perturbation have to be evaluated appropriately. One step of the Newton iteration requires the solution of several decoupled linear sub-problems in the structure and the fluid domains. These sub-problems are spatially discretized by a finite element method on hybrid meshes. For the time discretization, implicit first-order methods are used for both sub-problems. The discretized equations are solved by algebraic multigrid methods.  相似文献   

13.
Summary. In recent years a variety of high–order schemes for the numerical solution of conservation laws has been developed. In general, these numerical methods involve expensive flux evaluations in order to resolve discontinuities accurately. But in large parts of the flow domain the solution is smooth. Hence in these regions an unexpensive finite difference scheme suffices. In order to reduce the number of expensive flux evaluations we employ a multiresolution strategy which is similar in spirit to an approach that has been proposed by A. Harten several years ago. Concrete ingredients of this methodology have been described so far essentially for problems in a single space dimension. In order to realize such concepts for problems with several spatial dimensions and boundary fitted meshes essential deviations from previous investigations appear to be necessary though. This concerns handling the more complex interrelations of fluxes across cell interfaces, the derivation of appropriate evolution equations for multiscale representations of cell averages, stability and convergence, quantifying the compression effects by suitable adapted multiscale transformations and last but not least laying grounds for ultimately avoiding the storage of data corresponding to a full global mesh for the highest level of resolution. The objective of this paper is to develop such ingredients for any spatial dimension and block structured meshes obtained as parametric images of Cartesian grids. We conclude with some numerical results for the two–dimensional Euler equations modeling hypersonic flow around a blunt body. Received June 24, 1998 / Revised version received February 21, 2000 / Published online November 8, 2000  相似文献   

14.
The fundamental part of the contact stress problem solution using a finite element method is to locate possible contact areas reliably and efficiently. In this research, a remeshing technique is introduced to determine the contact region in a given accuracy. In the proposed iterative method, the meshes near the contact surface are modified so that the edge of the contact region is also an element’s edge. This approach overcomes the problem of surface representation at the transition point from contact to non-contact region. The remeshing technique is efficiently employed to adapt the mesh for more precise representation of the contact region. The method is applied to both finite element and boundary element methods. Overlapping of the meshes in the contact region is prevented by the inclusion of displacement and force constraints using the Lagrange multipliers technique. Since the method modifies the mesh only on the contacting and neighbouring region, the solution to the matrix system is very close to the previous one in each iteration. Both direct and iterative solver performances on BEM and FEM analyses are also investigated for the proposed incremental technique. The biconjugate gradient method and LU with Cholesky decomposition are used for solving the equation systems. Two numerical examples whose analytical solutions exist are used to illustrate the advantages of the proposed method. They show a significant improvement in accuracy compared to the solutions with fixed meshes.  相似文献   

15.
Longest edge (nested) algorithms for triangulation refinement in two dimensions are able to produce hierarchies of quality and nested irregular triangulations as needed both for adaptive finite element methods and for multigrid methods for PDEs. In addition, right-triangle bintree triangulations are multiresolution algorithms used for terrain modeling and real time visualization of terrain applications. These algorithms are based on the properties of the consecutive bisection of a triangle by the median of the longest edge, and can be formulated in terms of the longest edge propagation path (Lepp) and terminal edge concepts, which implies the use of very local refinement operations over fully conforming meshes (where the intersection of pairs of neighbor triangles is either a common edge or a common vertex). In this paper we review the Lepp-bisection algorithms, their properties and applications. To the end we use recent simpler and stronger results on the complexity aspects of the bisection method and its geometrical properties. We discuss and analyze the computational costs of the algorithms. The generalization of the algorithms to 3-dimensions is also discussed. Applications of these methods are presented: for serial and parallel view dependent level of detail terrain rendering, and for the parallel refinement of tetrahedral meshes.  相似文献   

16.
In this paper, we introduce a stabilizer free weak Galerkin (SFWG) finite element method for second order elliptic problems on rectangular meshes. With a special weak Gradient space, an order two superconvergence for the SFWG finite element solution is obtained, in both $L^2$ and $H^1$ norms. A local post-process lifts such a $P_k$ weak Galerkin solution to an optimal order $P_{k+2}$ solution. The numerical results confirm the theory.  相似文献   

17.
Piecewise uniform meshes introduced by Shishkin, are a very useful tool to construct robust and efficient numerical methods to approximate the solution of singularly perturbed problems. For small values of the diffusion coefficient, the step size ratios, in this kind of grids, can be very large. In this case, standard multigrid methods are not convergent. To avoid this troublesome, in this paper we propose a modified multigrid algorithm, which works fine on Shishkin meshes. We show some numerical experiments confirming that the proposed multigrid method is convergent, and it has similar properties that standard multigrid for classical elliptic problems.  相似文献   

18.
The phenomenon is studied of reducing the order of convergence by one in some classes of variable step size Nordsieck formulas as applied to the solution of the initial value problem for a first-order ordinary differential equation. This phenomenon is caused by the fact that the convergence of fixed step size Nordsieck methods requires weaker quasi-consistency than classical Runge-Kutta formulas, which require consistency up to a certain order. In other words, quasi-consistent Nordsieck methods on fixed step size meshes have a higher order of convergence than on variable step size ones. This fact creates certain difficulties in the automatic error control of these methods. It is shown how quasi-consistent methods can be modified so that the high order of convergence is preserved on variable step size meshes. The regular techniques proposed can be applied to any quasi-consistent Nordsieck methods. Specifically, it is shown how this technique performs for Nordsieck methods based on the multistep Adams-Moulton formulas, which are the most popular quasi-consistent methods. The theoretical conclusions of this paper are confirmed by the numerical results obtained for a test problem with a known solution.  相似文献   

19.
The mortar finite element method is a special domain decomposition method, which can handle the situation where meshes on different subdomains need not align across the interface. In this article, we will apply the mortar element method to general variational inequalities of free boundary type, such as free seepage flow, which may show different behaviors in different regions. We prove that if the solution of the original variational inequality belongs to H2(D), then the mortar element solution can achieve the same order error estimate as the conforming P1 finite element solution. Application of the mortar element method to a free surface seepage problem and an obstacle problem verifies not only its convergence property but also its great computational efficiency. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

20.
We develop a Nitsche-based formulation for a general class of stabilized finite element methods for the Stokes problem posed on a pair of overlapping, non-matching meshes. By extending the least-squares stabilization to the overlap region, we prove that the method is stable, consistent, and optimally convergent. To avoid an ill-conditioned linear algebra system, the scheme is augmented by a least-squares term measuring the discontinuity of the solution in the overlap region of the two meshes. As a consequence, we may prove an estimate for the condition number of the resulting stiffness matrix that is independent of the location of the interface. Finally, we present numerical examples in three spatial dimensions illustrating and confirming the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号