首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R^3. The periodic structure separates two homogeneous regions. The medium inside the structure is chiral and nonhomogeneous. In this paper, variational formulations coupling finite element methods in the chiral medium with a method of integral equations on the periodic interfaces are studied. The well-posedness of the continuous and discretized problems is established. Uniform convergence for the coupling variational approximations of the model problem is obtained.  相似文献   

2.
The authors prove some uniqueness theorems for meromorphic mappings in several complex variables into the complex projective space PN(C)with two families of moving targets,and the results obtained improve some earlier work.  相似文献   

3.
High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping methods are more accurate, but they often require additional numerical boundary treatment for several grid points near the boundary because of the wider numerical stencil. It is particularly important to treat the points near the inflow boundary accurately, as the information would flow into the computational domain and would affect global accuracy. In the literature, the numerical solution at these boundary points are either fixed with the exact solution, which is not always feasible, or computed with a first order discretization, which could reduce the global accuracy. In this paper, we discuss two strategies to handle the inflow boundary conditions. One is based on the numerical solutions of a first order fast sweeping method with several different mesh sizes near the boundary and a Richardson extrapolation, the other is based on a Lax-Wendroff type procedure to repeatedly utilizing the PDE to write the normal spatial derivatives to the inflow boundary in terms of the tangential derivatives, thereby obtaining high order solution values at the grid points near the inflow boundary. We explore these two approaches using the fast sweeping high order WENO scheme in [18] for solving the static Eikonal equation as a representative example. Numerical examples are given to demonstrate the performance of these two approaches.  相似文献   

4.
The geometries of many problems of practical interest are created from circular or ellip- tic arcs. Arc boundary elements can represent these boundaries exactly, and consequently, errors caused by representing such geometries using polynomial shape functions can be removed. To fully utilize the geometry of circular boundary, the non-singular boundary integral equations (BIEs) and a general nonlinear transformation technique available for arc elements are introduced to remove or damp out the singular or nearly singular proper- ties of the integral kernels. Several benchmark 2D elastostatic problems demonstrate that the present algorithm can effectively handle singular and nearly singular integrals occur- ring in the boundary element method (BEM) for boundary layer effect and thin-walled structural problems. Owing to the employment of exact geometrical representation, only a small number of elements need to be divided along the boundary and high accuracy can be achieved without increasing other more computational efforts.  相似文献   

5.
We consider the approximation of systems of reaction-diffusion equations, with the finite element method. The highest derivative in each equation is multiplied by a parameter ε∈ (0, 1], and as ε → 0 the solution of the system will contain boundary layers. We extend the analysis of the corresponding scalar problem from [Melenk, IMA J. Numer. Anal. 17(1997), pp. 577-601], to construct a finite element scheme which includes elements of size O(εp) near the boundary, where p is the degree of the approximating polynomials. We show that, under the assumption of analytic input data, the method yields exponential rates of convergence, independently of ε, when the error is measured in the energy norm associated with the problem. Numerical computations supporting the theory are also presented, which also show that the method yields robust exponential convergence rates when the error in the maximum norm is used.  相似文献   

6.
This paper develops and analyzes a moving mesh finite difference method for solving partial integro-differential equations. First, the time-dependent mapping of the coordinate transformation is approximated by a a piecewise linear function in time. Then, piecewise quadratic polynomial in space and an efficient method to discretize the memory term of the equation is designed using the moving mesh approach. In each time slice, a simple piecewise constant approximation of the integrand is used, and thus a quadrature is constructed for the memory term. The central finite difference scheme for space and the backward Euler scheme for time are used. The paper proves that the accumulation of the quadrature error is uniformly bounded and that the convergence of the method is second order in space and first order in time. Numerical experiments are carried out to confirm the theoretical predictions.  相似文献   

7.
In this paper, the finite element method and the boundary element method are combined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate transformation and the Fourier series expansion, the exact quasilinear artificial boundary conditions and a series of the corresponding approximations for the given problem are presented. Then the original problem is reduced into an equivalent problem defined in a bounded computational domain. We provide error estimate for the Galerkin method. Numerical results are presented to illustrate the theoretical results.  相似文献   

8.
The numerical solution of flow problems usually requires bounded domains although the physical problem may take place in an unbounded or substantially larger domain. In this case, artificial boundaries are necessary. A well established artificial boundary condition for the Navier-Stokes equations diseretized by finite elements is the “do-nothing” condition. The reason for this is the fact that this condition appears automatically in the variational formulation after partial integration of the viscous term and the pressure gradient. This condition is one of the most established outflow conditions for Navier-Stokes but there are very few analytical insight into this boundary condition. We address the question of existence and stability of weak solutions for the Navier-Stokes equations with a “directional do-nothing” condition. In contrast to the usual “do-nothing” condition this boundary condition has enhanced stability properties. In the case of pure outflow, the condition is equivalent to the original one, whereas in the case of inflow a dissipative effect appears. We show existence of weak solutions and illustrate the effect of this boundary condition by computation of steady and non-steady flows.  相似文献   

9.
Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions.  相似文献   

10.
A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to its normal form and the reduced problem is solved by finite difference method taking variable mesh. To support the efficiency of the method, several numerical examples have been considered.  相似文献   

11.
We introduce a new and efficient numerical method for multicriterion optimal control and single criterion optimal control under integral constraints. The approach is based on extending the state space to include information on a "budget" remaining to satisfy each constraint; the augmented Hamilton-Jacobi-Bellman PDE is then solved numerically. The efficiency of our approach hinges on the causality in that PDE, i.e., the monotonicity of characteristic curves in one of the newly added dimensions. A semi-Lagrangian "marching" method is used to approximate the discontinuous viscosity solution efficiently. We compare this to a recently introduced "weighted sum" based algorithm for the same problem [25]. We illustrate our method using examples from flight path planning and robotic navigation in the presence of friendly and adversarial observers.  相似文献   

12.
In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Benard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the superconvergence analysis for the control; it is proved that the approximation has a second-order rate of convergence. We further give the superconvergence analysis for the states and the co-states. Then we derive error estimates in L^∞-norm and optimal error estimates in L^2-norm.  相似文献   

13.
Asymptotic error expansions in H^1-norm for the bilinear finite element approximation to a class of optimal control problems are derived for rectangular meshes. With the rectan- gular meshes, the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied. The higher order numerical approximations are used to generate a posteriori error estimators for the finite element approximation.  相似文献   

14.
For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Math., 22 (2004), pp. 287-298], it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved. The purpose of this work is to establish a stability and convergence theory for this fast numerical method. The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation. The formal orders of convergence observed in the numerical experiments are proved rigorously.  相似文献   

15.
This paper presents and analyzes a monotone domain decomposition algorithm for solving nonlinear singularly perturbed reaction-diffusion problems of parabolic type. To solve the nonlinear weighted average finite difference scheme for the partial differential equation, we construct a monotone domain decomposition algorithm based on a Schwarz alternating method and a box-domain decomposition. This algorithm needs only to solve linear discrete systems at each iterative step and converges monotonically to the exact solution of the nonlinear discrete problem. domain decomposition algorithm is estimated The rate of convergence of the monotone Numerical experiments are presented.  相似文献   

16.
PREDUAL SPACES FOR Q SPACES   总被引:2,自引:2,他引:0  
To find the predual spaces Pα(R^n) of Qα(R^n) is an important motivation in the study of Q spaces. In this article, wavelet methods are used to solve this problem in a constructive way. First, an wavelet tent atomic characterization of Pα(Rn) is given, then its usual atomic characterization and Poisson extension characterization are given. Finally, the continuity on Pα of Calderon-Zygmund operators is studied, and the result can be also applied to give the Morrey characterization of Pα(Rn).  相似文献   

17.
The application of a standard Galerkin finite element method for convection-diffusion problems leads to oscillations in the discrete solution, therefore stabilization seems to be necessary. We discuss several recent stabilization methods, especially its combination with a Galerkin method on layer-adapted meshes. Supercloseness results obtained allow an improvement of the discrete solution using recovery techniques.  相似文献   

18.
In this paper, a two-scale higher-order finite element discretization scheme is proposed and analyzed for a Schroedinger equation on tensor product domains. With the scheme, the solution of the eigenvalue problem on a fine grid can be reduced to an eigenvalue problem on a much coarser grid together with some eigenvalue problems on partially fine grids. It is shown theoretically and numerically that the proposed two-scale higher-order scheme not only significantly reduces the number of degrees of freedom but also produces very accurate approximations.  相似文献   

19.
In this paper we review recent developments in the analysis of finite element methods for incompressible flow problems with local projection stabilization (LPS). These methods preserve the favourable stability and approximation properties of classical residual-based stabilization (RBS) techniques but avoid the strong coupling of velocity and pressure in the stabilization terms. LPS-methods belong to the class of symmetric stabilization techniques and may be characterized as variational multiscale methods. In this work we summarize the most important a priori estimates of this class of stabilization schemes developed in the past 6 years. We consider the Stokes equations, the Oseen linearization and the NavierStokes equations. Furthermore, we apply it to optimal control problems with linear(ized) flow problems, since the symmetry of the stabilization leads to the nice feature that the operations "discretize" and "optimize" commute.  相似文献   

20.
In this article, we analyse three related preconditioned steepest descent algorithms, which are partially popular in Hartree-Fock and Kohn-Sham theory as well as invariant subspace computations, from the viewpoint of minimization of the corresponding functionals, constrained by orthogonality conditions. We exploit the geometry of the admissible manifold, i.e., the invariance with respect to unitary transformations, to reformulate the problem on the Grassmann manifold as the admissible set. We then prove asymptotical linear convergence of the algorithms under the condition that the Hessian of the corresponding Lagrangian is elliptic on the tangent space of the Grassmann manifold at the minimizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号