共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of magnetism and magnetic materials》2002,246(3):360-365
Ni-ferrites were prepared at different temperatures via sol–gel method. The electromagnetic properties of these materials, namely permittivity and permeability were measured in the 0.1–13 GHz frequency range. Following a mathematical procedure, microwave absorption diagrams were constructed including the dependence of the microwave absorption of ferrite layer on microwave frequency and layer thickness. The permeability spectra broaden and the microwave absorption improves at 9–10 GHz with increase of annealing temperature. 相似文献
2.
Enhanced structural and magnetic properties of microwave sintered Li–Ni–Co ferrites prepared by sol–gel method 下载免费PDF全文
《中国物理 B》2019,(2)
The properties of lithium ferrites are very sensitive to chemical composition, synthesis method, and sintering techniques. Li–Ni–Co ferrites with compositional formula Li_(0.45-0.5x)Ni_(0.1)Co_xFe_(2.45-0.5x)O_4, where 0.00 ≤ x ≤ 0.1 in steps of 0.02 were prepared by chemical sol–gel method and sintered by microwave sintering technique. The x-ray diffraction patterns confirmed the formation of single phase with spinel structure in all the samples. The structural parameter viz.lattice constant, crystallite size, and x-ray density for these samples were studied and compared with those measured from samples of similar composition prepared by the sol–gel method and sintered by conventional sintering technique. Enhancement in the magnetic properties like Curie temperature, hysteresis parameters was observed by employing sol–gel synthesis combined with microwave sintering. The results obtained and mechanisms involved are discussed in the paper. 相似文献
3.
The paper describes the effect of ZnMn2O4 doping with different Sn ratios. Snx–ZnMn2O4 is prepared with Sol–Gel route at 700 °C. The structural, optical and electrical properties were studied. The X-ray diffraction patterns indicate the formation of pure tetragonal phase for the ratios lower than 0.03%, while for other compositions, the secondary phases were observed. The attenuated total reflectance (ATR) analysis confirmed the localization of Sn in octahedral sites. The optical properties showed not only the increase of Eg, but also the improvement of the optical characteristics such as extinction coefficient (k), optical conductivity (σopt), dissipation factor (tan δ) and the relaxation time (τ). The latter has been improved by 50%. The Hall measurements confirmed the transition of the conductivity mode, i.e, from p to n-type. The formation of SnMn1+ point defects is evidenced; however, the transport properties indicate that the charge carriers are mainly localized. 相似文献
4.
R.B. Jotania R.B. Khomane C.C. Chauhan S.K. Menon B.D. Kulkarni 《Journal of magnetism and magnetic materials》2008
The preparation of W-type hexaferrite particles with the composition BaCa2Fe16O27 by microemulsion and a stearic acid sol–gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa2Fe16O27 hexaferrites has been studied. The value of saturation magnetization (Ms) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization (Ms=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization (Ms=24.60 emu/g) compared to the normal sample. 相似文献
5.
Dong Zhang Changzheng Wang Yunlong Liu Qiang Shi Wenjun Wang Ya Zhai 《Journal of luminescence》2012,132(6):1529-1531
Luminescence investigations of Mn-activated ZnAl2O4 phosphors prepared by using sol–gel method were described. The phosphor was characterized by X-ray diffraction (XRD) and electronic paramagnetic resonance (EPR). The EPR spectra of the samples suggested that Mn ions possessed homogeneous distribution in ZnAl2O4 phosphors. Photoluminescence studies of the prepared phosphors showed green and red emissions. The red emission became weaker, and vanished at last with sintering temperature increasing from 600 to 900 °C in reducing atmosphere, while the intensity of green emission peak increased. Furthermore, when the phosphor was sintered at 900 °C in air, the intensity of red and green emissions decreased, but the value of intensity ratio increased. It suggested that the green emission resulted from Mn2+ and the red emission resulted from Mn4+. 相似文献
6.
This paper reports that a series of NiCuZn ferrite powders and films are prepared by using sol-gel method.The effects of raw material composition and the calcinate temperature on magnetic properties of them are investigated.The NiCuZn ferrite powders are prepared by the self-propagating high-temperature synthesis method and subsequently heated at 700 C~1000 C.The results show that NiCuZn ferrite powders with single spinel phase can be formed after heat-treating at 750 C.Powders obtained from Ni 0.4 Cu 0.2 Zn 0.4 Fe 1.9 O 4 gel have better magnetic properties than those from gels with other composition.After heat-treating at 900 C for 3 h,coercivity H c and saturation magnetization M s are 9.7 Oe (1 Oe=80 A/m) and 72.4 emu/g,respectively.Different from the powders,NiCuZn films produced on Si (100) from the Ni 0.4 Cu 0.2 Zn 0.4 Fe 2 O 4 gel formed at room temperature possess high properties.When heat-treating condition is around 600 C for 6 min,samples with low H c and high M s will be obtained.The minimal H c is 16.7 Oe and M s is about 300 emu/cm 3.In comparison with the films prepared through long-time heat treating,the films prepared through short heat-treating time exhibits better soft magnetic properties. 相似文献
7.
Ceramics powder of BaCe0.95Yb0.05O2.975 was successfully prepared by sol–gel method. Thermogravimetric analysis showed that the decomposition of the dried powder
was completed at 1,000 °C. Three strongly exothermic peaks observed in differential thermogravimetric signal indicated three
major stages of weight loss in the sample. The high crystallinity of sample with orthorhombic structure was confirmed by X-ray
diffraction. The loose particles size obtained from scanning electron microscope was in the range of 65–100 nm, which is almost
in the same range as that observed in particle size distribution. The sample showed a dc conductivity of ~1.3 × 10−4 S cm−1 at 650 °C and the activation energy, E
a, was found to be 1.4 eV. Result of chemical stability test showed that the compound was unstable in atmosphere containing
pure carbon dioxide. 相似文献
8.
Structural and optical properties of 1 at % Al-doped Zn1−xMgxO (x=0–8%) powders prepared by sol–gel method were systematically investigated by means of X-ray diffraction, scanning electron microscopy, ultraviolet–visible absorbance measurement, photoluminescence and Raman scattering spectra. All the powders retained the hexagonal wurtzite structure of ZnO. The band gap and near band emission energies determined from absorbance and photoluminescence spectra increased linearly with increasing Mg content, respectively, which implied that the Mg worked effectively on ZnO band gap engineering, irrespective of Al codoping. However, according to the PL and Raman scattering studies, for the sample of x=8%, the Al doping efficiency was decreased by higher Mg codoping. On the other hand, the effect of Mg codoping on photocatalytic degradation of methylene orange was explored experimentally. The substitution of Mg ions at Zn sites shifted the conduction band toward higher energies and then enhanced the photocatalytic activity, while the incorporation of interstitial Mg ions and decreased Al doping efficiency for higher Mg doping sample (x=8%) reduced the photocatalytic activity. 相似文献
9.
10.
11.
12.
G. Valverde-Aguilar G. Prado-Prone P. Vergara-Aragón J. Garcia-Macedo Patricia Santiago Luis Rendón 《Applied Physics A: Materials Science & Processing》2014,116(3):1075-1084
Dopamine was encapsulated into nanoporous amorphous TiO2 matrix by sol–gel method under atmospheric conditions. A second sample was obtained by the addition of the crown-ether 15C5 in this previous sample. Thin films were spin-coated on glass wafers. No heat treatment was employed in both films. All films were characterized using infrared spectroscopy, high resolution transmission electronic microscopy, X-ray diffraction, optical absorption and scanning electronic microscopy. Despite the films prepared with 15C5 were no calcined, a partial crystallization was identified. Anatase and rutile nanoparticles with sizes of 4–5 nm were obtained. Photoconductivity technique was used to determine the charge transport mechanism on these films. Experimental data were fitted with straight lines at darkness and under illumination wavelengths at 320, 400, and 515 nm. It indicates an ohmic behavior. Photovoltaic and photoconductivity parameters were determined from the current density vs. the applied-electrical-field results. Amorphous film has bigger photovoltaic and photoconductive parameters than the partially crystalline film. Results observed in the present investigation prove that the nanoporous TiO2 matrix can protect the dopamine inhibiting its chemical instability. This fact modifies the optical, physical and electrical properties of the film, and is intensified when 15C5 is added. 相似文献
13.
This article reports the preparation and characterization of europium-doped zirconium oxide (ZrO2:Eu3+) formed by homogeneous precipitation from propoxyde of zirconium [Zr(OC3H7)4]. The alkoxide sol gel process is an efficient method to prepare the zirconium oxide matrix by the hydrolysis of alkoxide precursors followed by condensation to yield a polymeric oxo-bridged ZrO2 network. All compounds were characterized by thermal analysis and the X-ray diffractometry method. The thermoluminescence (TL) emission properties of ZrO2:Eu3+ under beta radiation effects are studied. The europium-doped sintered zirconia powder presents a TL glow curve with two peaks (Tmax) centered at around 204 and around 292 °C, respectively. TL response of ZrO2:Eu3+ as a function of beta-absorbed dose was linear from 2 Gy up to 90 Gy. The europium ion (Eu3+)-doped ZrO2 was found to be more sensitive to beta radiation than undoped ZrO2 obtained by the same method and presented a little fading of the TL signal compared with undoped zirconium oxide. 相似文献
14.
Vezo O. S. Gareev K. G. Korolev D. V. Kuryshev I. A. Lebedev S. V. Moshnikov V. A. Sergienko E. S. Kharitonskii P. V. 《Physics of the Solid State》2017,59(5):1008-1013
Physics of the Solid State - Composite Fe m O n –SiO2 particles have been obtained by precipitation of iron oxide from aqueous solution with the addition of tetraethoxysilane. The shapes and... 相似文献
15.
Spodumene is an aluminosilicate that has proven suitable for high-dose TL dosimetry of beta or gamma rays. Due to the presence of lithium in its chemical composition (LiAlSi2O6 – β-LAS), it has potential as neutron dosimeter as well. This silicate may be obtained naturally or synthetically. The synthetic LAS has been produced by solid state reaction and conventional sol–gel, whose difficulty arises from the need to employ high temperatures and high cost reagents, respectively. Alternative routes like Pechini and proteic sol–gel methods are promising, because they can reduce production costs and the possibility of environmental pollution. This work aimed at producing spodumene with the proteic sol–gel method using edible unflavored gelatin as a precursor and also with the Pechini method. The products were characterized physically and morphologically, and their applicability as TL dosimeter was investigated, comparing the sensitivity of samples produced by different methods. Two sets of samples were produced using different sources of silicon, tetraethyl orthosilicate (TEOS, Si(C2H5O)4) and silica (SiO2). The materials produced were characterized by X-ray diffraction and by thermal analysis in order to evaluate their structural properties, as well as possible temperature-dependent changes in physical or chemical properties. The syntherized pellets produced with these crystals were irradiated with a 90Sr–90Y source and their TL glow curves were evaluated. The production of β-LAS was successful by both methods, either using silica or TEOS as a silicon source. The crystals were obtained using much lower temperatures than by methods described in literature. We observed that the method of powder production was critical to develop a radiation detector: the best TL material was the powder produced using silica and the Pechini Method. 相似文献
16.
Sharul Ashikin Kamaruddin Kah-Yoong Chan Ho-Kwang Yow Mohd Zainizan Sahdan Hashim Saim Dietmar Knipp 《Applied Physics A: Materials Science & Processing》2011,104(1):263-268
Zinc oxide (ZnO) thin films and micro- and nanostructures are very promising candidates for novel applications in emerging
thin-film transistors, solar cells, sensors and optoelectronic devices. In this paper, a low-cost sol–gel spin coating technique
was used to fabricate ZnO films on glass substrates. The sol–gel fabrication process of the ZnO films is described. The influence
of precursor concentration on the material properties of the ZnO films was investigated. Atomic force microscopy and X-ray
diffractometry were employed to examine the structural properties of the ZnO films. The optical properties of the ZnO films
were characterized with ultraviolet–visible spectroscopy. The experimental results reveal that the precursor concentration
in the sol–gel spin coating process exerts a strong influence on the properties of the ZnO films. The effects of the precursor
concentration are discussed. 相似文献
17.
《Comptes Rendus de l''Academie des Sciences Series IV Physics》2000,1(4):479-491
We have elaborated organic–inorganic hybrid light-emitting diodes (HLED). These devices emitting in the green are formed of two hybrid thin layers, exhibiting different functionalities, which are sandwiched between indium–tin oxide (ITO) and metallic electrodes. These layers have been prepared from silane precursors modified with hole transporting units and light-emitting naphthalimide moieties by the sol–gel technique. The hole transporting sol–gel layers exhibit about the same charge mobility as organic polymers having equivalent active units. The maximum external quantum efficiency of the best diode using LiF/Al cathode is about 1% and the luminance reaches 4000 cd · m −2 . 相似文献
18.
Anchal Srivastava Kamakhya Prakash Misra 《Applied Physics A: Materials Science & Processing》2014,117(2):917-926
This paper reports on the preparation, characterization and optical properties of transparent Ba(Co2x Ti1?x )O3 (0 ≤ x ≤ 0.06) thin films prepared by sol–gel method and deposited on fused quartz substrate by spin-coating technique. Their formation is confirmed by X-ray diffraction patterns, energy dispersive X-ray spectrometry and Fourier transformed infrared measurements. Hitherto unreported near-band-gap photoluminescence in ultraviolet, at 378 nm (3.28 eV), of exciton origin is observed which remains unaffected with change in excitation wavelength from 320 to 350 nm. A weak defect emission appears in green region. For larger excitation wavelength, i.e., 488 nm, emission arising from localized states again occurs in green region but with lower energy. The occurrence of efficient violet–blue PL emission is related to ‘direct’ band gap and shallow levels with high optical band gap values. Analysis of band gap variation with dopant concentration, determined using Tauc’s plot assuming them both of ‘direct’ and ‘indirect’ nature, also indicates the ‘direct’ nature. Co+2 ions as dopants promote a decrease of band gap of films linearly. Scanning electron micrographs show the granular and flakes-like surface growth. Atomic force microscopy images show the presence of ribbon-like nanostructured grains throughout the surface of the films which is smooth with small values of surface roughness. 相似文献
19.
The MgO-Ga2O3-SiO2 (MGS) glass and glass-ceramic (GC) containing MgGa2O4 nanocrystals and Dy3+ ions were prepared by a simple sol–gel method. MgGa2O4 nanocrystals in MgO-Ga2O3-SiO2 GC formed when the heating temperature reached 800 °C. The energy transfer from MgGa2O4 nanocrystals to Dy3+ was observed. It is important that the strong white light emission is observed corresponding to the excitation band gap of MgGa2O4 nanocrystals. As exciting Dy3+ ions, only weak yellow and blue emissions were observed. 相似文献