首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We propose an efficient quantum key distribution protocol based on the photon-pair generation from parametric down-conversion (PDC). It uses the same experimental setup as the conventional protocol, but a refined data analysis enables detection of photon-number splitting attacks by utilizing information from a built-in decoy state. Assuming the use of practical detectors, we analyze the unconditional security of the new scheme and show that it improves the secure key generation rate by several orders of magnitude at long distances, using a high intensity PDC source.  相似文献   

3.
We demonstrate the effective removal of intrinsic distinguishability between entangled-photon pairs in femtosecond spontaneous parametric down-conversion. High-visibility quantum interference is recovered (an increase to 96% from 17%) while preserving the high photon-flux density associated with the use of long nonlinear crystals. This new technique is expected to serve as a basic component in the preparation of multiphoton entangled states.  相似文献   

4.
Single photons produced by fundamentally dissimilar physical processes will in general not be indistinguishable. We show how photons produced from a quantum dot and by parametric down-conversion in a nonlinear crystal can be manipulated to be indistinguishable. The measured two-photon coalescence probability is 16%, and is limited by quantum-dot decoherence. Temporal filtering to the quantum-dot coherence time and accounting for detector time response increases this to 61% while retaining 25% of the events. This technique can connect different elements in a scalable quantum network.  相似文献   

5.
In this Letter, we report the observation of the correlation between two modes of microwave radiation resulting from the amplification of quantum noise by the Josephson parametric converter. This process, seen from the pump, can be viewed as parametric down-conversion. The correlation is measured by an interference experiment displaying a contrast better than 99% with a number of photons per mode greater than 250,000. Dispersive measurements of mesoscopic systems and quantum encryption can benefit from this development.  相似文献   

6.
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits into two other photons of lower energies. One would think that this article is about particle physics and yet it is not, as this process can occur fairly easily on a day to day basis in an optics laboratory. Nowadays, SPDC is at the heart of many quantum optics experiments for applications in quantum cryptography, quantum simulation, quantum metrology but also for testing fundamentals laws of physics in quantum mechanics. In this article, we will focus on the physics of this process and highlight a few important properties of SPDC. There will be two parts: a first theoretical one showing the particular quantum nature of SPDC, and the second part, more experimental and in particular focusing on applications of parametric down-conversion. This is clearly a non-exhaustive article about parametric down-conversion as there is a tremendous literature on the subject, but it gives the necessary first elements needed for a novice student or researcher to work on SPDC sources of light.  相似文献   

7.
Spontaneous parametric down-conversion (SPDC) in media with no inversion center and the use of this phenomenon in the spectroscopy of natural oscillation states of a crystal lattice (i.e., optical phonons) are retrospectively described. We think that the SPDC spectroscopy method is estimated inappropriately and hope to again attract the attention of readers to one of the most interesting quantum phenomena of nonlinear optics that has no classical analog. The capabilities of SPDC spectroscopy will certainly be used in both fundamental science and technology of new materials.  相似文献   

8.
Joseph Akeyo Omolo 《Pramana》2008,71(6):1311-1320
The quantum dynamics of a two-mode non-resonant parametric down-conversion process is studied by recasting the time evolution equations for the basic operators in an equivalent spin equation form with simpler exact solutions for a pump field with harmonic time dependence. Expectation values of suitable operators for studying important features such as squeezing and quantum revivals are presented in simple forms.   相似文献   

9.
《中国物理 B》2021,30(7):70304-070304
The high-purity single-photon source plays an important role in the field of quantum information. Usually, it is generated through spontaneous parametric down-conversion process. In this paper, we investigate and summarize a few approaches on obtaining single-photon sources with a high purity using either PPKTP or PPLN nonlinear crystals. Moreover, we present improved schemes to increase the purity based on existing work, corresponding applicable conditions and procedures are discussed and analyzed. Besides, we carry out numerical simulations and show that nearly perfect purity can be reached even without using any filters. Therefore, this work might provide valuable references for the generation and application of high purity single-photon sources.  相似文献   

10.
11.
We analyze the process of photon-pair generation with simultaneous quantum walks in a quadratic nonlinear waveguide array. We demonstrate that the spontaneous parametric down-conversion in the array allows for creating quantum states with strongly pronounced spatial correlations, which are qualitatively different from those possible in bulk crystals or through quantum walks in linear waveguide arrays. Most importantly, the photon correlations can be controlled entirely classically by varying the spatial profile of the pump beam or the phase-matching conditions.  相似文献   

12.
The transition between modulation instability gain and induced soliton fission in nonlinear fiber is experimentally investigated by coherent seeding with the two-color output of an optical parametric oscillator. This approach produces supercontinuum spectra displaying persistent, fine modulation from seeding-induced noise reduction. Numerical simulations support the findings.  相似文献   

13.
We use spontaneous parametric down-conversion in a cascade of crystals, driven by a single monochromatic cw pump laser, to study the interference of entangled photon pairs. By changing the distance between the crystals, the observed quantum interference pattern varies continuously from that associated with a longer single crystal to that associated with independent emissions from two distinct crystals. Postselection via spectral filtering suppresses this phenomenon. These findings are expected to advance the field of quantum-state engineering.  相似文献   

14.
15.
Four-photon correlations of the output radiation of a parametric amplifier with a vacuum at the input are considered for an arbitrary parametric gain coefficient. Such states are interpreted in the literature as four-photon states. It is shown that the fourth-order correlation function for such states in the limit of a small number of photons has an asymptotics typical of two-photon states. Nevertheless, even in the “classical” limit of high intensities, the level of four-photon correlations, i.e., the value of the normalized fourth-order correlation function, is substantially greater than that for coherent and even thermal fields.  相似文献   

16.
Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is the first step towards secure message transmission and distributed quantum computing. To date, the most promising proposals require quantum repeaters to mitigate the exponential decrease in communication rate due to optical fiber losses. However, these are exquisitely sensitive to the lifetimes of their memory elements. We propose a multiplexing of quantum nodes that should enable the construction of quantum networks that are largely insensitive to the coherence times of the quantum memory elements.  相似文献   

17.
A theory is presented for the quantum state of photon pairs generated from spontaneous parametric down-conversion nonlinear process. In this theory, the influence of the final sizes of nonlinear optical crystals on optical eigenmodes is explicitly taken into consideration. It was found that these photon pairs are not in entangled quantum states. Polarization correlations between the signal beam and the idler beam are explained. It is also shown that the two photons generated from SPDC are not spatially separated, therefore the polarization correlation between the signal and idler beams is not an evidence for quantum non-locality. The text was submitted by the authors in English.  相似文献   

18.
We derive multimode generating functions, photon-number distributions, integrated-intensity distributions, moments and quadrature fluctuations for stimulated parametric down-conversion in relation to experiments measuring joint distributions. The border between classical and quantum behaviour is given.  相似文献   

19.
We show that radiation generated in optical parametric down-conversion with losses and noise is entangled for all times if the coupling coefficient is higher than half of damping constant and the product of damping constant and mean number of noise photons. For the process stimulated by means of chaotic light there is a saturable bound of its intensity for the generation of nonclassical light. Otherwise the quantum behaviour and entanglement are fully reduced. Under some restrictions for noise nonclassical light can also be generated at and below the threshold.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号