首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of the content of various molecular impurities in the ambient air using helicopter- and aircraft-borne systems represent an extremely urgent challenge. In this respect, of special interest are the devices that that provide leakage monitoring in gas lines in order to prevent emergencies. In the paper results of the tunable diode laser-based instrument development and testing are presented.  相似文献   

2.
The objective of this work was investigation of possibility of tunable diode laser spectroscopy (TDLS) technique application for gaseous uranium hexafluoride (UF6) isotope measurement. Spectra of uranium hexafluoride gas mixture were investigated using two different Fourier Transform Spectrometers Vector 22 and Bruker 66v. Observed spectral features were identified and model spectra of different gas mixture components were developed. Optimal spectral range for measurements was determined near maximum of UF6 combination band nu1+nu3. Laboratory prototype of multi-channel instrument under consideration based on tunable diode lasers was built and algorithms were developed to measure gaseous UF6 isotopic ratios. Diode laser used operated at the wavelengths near lambda=7.68 microm. It was placed in a liquid nitrogen cooled cryostat. Three instrument channels were used for laser frequency calibration and spectra recording. Instrument was tested in measurements of real UF6 gas mixtures. Measurement accuracy was analyzed and error sources were identified. The root-mean-square random error in the 235U isotopic content is characterized by a spread of about 0.27% for quick measurements (at times less than 1 min) and 1% for periods of more than an hour. It was estimated that the measurement accuracy could be improved by at least an order of magnitude by minimizing the error sources.  相似文献   

3.
We describe the hardware and software of the high-sensitive two-channel opto-acoustic spectrometer with a near infrared diode laser. A semiconductor TEC-100 laser with outer resonator generates a continuous single-frequency radiation in the range of 6040-6300 cm-1 with spectral resolution better that 10 MHz. The newly designed model of photo-acoustic cells in the form of a ring type resonator was used in the spectrometer, and the system allows the measurement of a weak absorption coefficient equal to 1.4x10(-7) cm-1 Hz-1/2 with a laser radiation power of 0.003 W. The methane absorption spectra within a range of 6080-6180 cm-1 were measured with a spectral resolution of 10 MHz and the signal to noise ratio more than 10(3). Six hundred absorption lines were recorded, which is twice as many as in HITRAN-2004. The accurate measurements of the half-width and shift of methane unresolved triplet R3 of 2nu3 band permit us to determine values of the broadening and shift coefficients for CH4-air, CH4-N2, and CH4-SF6 mixtures.  相似文献   

4.
The collisional broadening and shift rate coefficients of the “forbidden“ 6p2 3P0 → 6p2 3P1 transition in lead were determined by diode laser absorption measurements performed simultaneously in two resistively heated hot-pipes. One hot-pipe contained Pb vapor and noble gas (Ar or He) at low pressure, while the other was filled with Pb and noble gas at variable pressure. The measurements were performed at temperatures of 1220 K and 1290 K, i.e., lead number densities of 4.8 × 1015 cm− 3 and 1.2 × 1016 cm− 3. The broadening rates were obtained by fitting the experimental collisionally broadened absorption line shapes to theoretical Voigt profiles. The shift rates were determined by measuring the difference between the peak absorption positions in the spectra measured simultaneously in the heat pipe filled with noble gas at reference pressure and the one with noble gas at variable pressure. The following data for the broadening and shift rate coefficients due to collisions with Ar and He were obtained: γBAr = (3.4 ± 0.1) × 10− 10 cm3 s− 1, γBHe = (3.8 ± 0.1) × 10− 10 cm3 s− 1, γSAr = (− 7.3 ± 0.8) × 10− 11 cm3 s− 1, γSHe = (− 6.5 ± 0.7) × 10− 11 cm3 s− 1.  相似文献   

5.
Simultaneous ultraviolet (UV) and infrared (IR) measurements of ozone concentration in air in the 1200-300 ppbv range have been performed using the ultraviolet absorption in the Hartley band at 0.2537 microm and the infrared absorption of a doublet at 9.507 microm in the nu(3) vibration-rotation band. Infrared concentration measurements were achieved using the tunable diode laser spectrometer of LPMA in Paris with interferometric control of the emitted wavelength while the UV concentration measurements were performed with the 49PS Megatec ozone generator of the Bureau National de Metrologie (BNM). The simultaneous recording of spectra of a reference cell filled with pure distilled ozone and of a low concentration mixture inside a long absorbing path Herriott cell allows to carry out infrared concentration measurements with an accuracy of the same order as the ultraviolet ones and provides the instrumental parameters of the spectrometer corresponding to each concentration measurement, which reduces systematic errors. Within the respective absolute uncertainties proper to the two techniques, no systematic discrepancy was evidenced between the IR and the UV measurements. The ozone ultraviolet absorption coefficient value determined by Hearn (308.3 +/- 4 cm(-1)atm(-1)) and used by the BNM and the National Institute of Standards and Technology (NIST) is confirmed by the present work.  相似文献   

6.
We present a novel device technology to produce DFB laser diodes which are suitable for tunable diode laser spectroscopy. The new technological approach employs lateral metal distributed feedback (DFB) gratings in close proximity to the laser ridge which results in single mode emission with high spectral purity and output powers as required for most spectroscopic applications. Over the entire wavelength range from the visible (760 nm) up to the near-infrared (2.5 microm) single mode emission can be obtained for devices based on different semiconductor systems such as GaAs, InP and GaSb. Typical side mode suppression ratios are better than 35 dB for cw-room temperature operation and narrow linewidths ensure high spectroscopic resolution.  相似文献   

7.
Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur.  相似文献   

8.
We have constructed a stabilized low temperature infrared absorption cell cooled by an open cycle refrigerator, which can run with liquid nitrogen from 250 to 80K or with liquid helium from 80K to a few kelvin. Several CO infrared spectra were recorded at low temperature using a tunable diode laser spectrometer. These spectra were analyzed taking into account the detailed effects of collisions on the line profile when the pressure increases. We also recorded spectra at very low pressure to accurately model the diode laser emission. Spectra of the R(2) line in the fundamental band of 13CO cooled by collisions with helium buffer gas at 10.5K and at pressures near 1 Torr have been recorded. The He-pressure broadening parameter (gamma(0) = 0.3 cm(-1) atm(-1)) has been derived from the simultaneous analysis of four spectra at different pressures.  相似文献   

9.
Some overtone absorption lines of ammonia and ethylene have been examined by using a tunable diode laser (TDL) spectrometer in the region around 12,650 and 11,800 cm(-1), respectively. The spectrometer sources are commercially available double heterostructure InGaAlAs and AlGaAs TDLs operating in the "free-running" mode. The high resolving power ( approximately 10(7) ) of the spectrometer permitted the detection and the study of the line positions of such molecules with a precision better than 0.01 cm(-1). In order to maximize the signal to noise ratio and to extract the necessary informations either on the line width and on the line position for the detected molecular resonances, the wavelength modulation spectroscopy (WMS) along with the second harmonic detection techniques have been applied. For this purpose, the fitting procedure took into account the instrumental effects and the amplitude modulation (AM) always associated with the frequency modulation (FM) of these type of sources. This technique permitted also the measurement of the collisional-broadening and -shifting coefficients by different buffer gases at room temperature.  相似文献   

10.
A technique has been developed for the determination of molecular parameters, including infrared absorption line positions, strengths, and nitrogen-broadened half-widths for 1,3-butadiene (C(4)H(6)) and propylene (C(3)H(6)). The parameters for these two molecules are required for quantitation using Tunable Diode Laser Absorption Spectroscopy (TDLAS). These molecules have populations of highly overlapping infrared absorption lines in their room temperature spectra. The technique reported here provides a procedure for estimating the molecular parameters for these overlapping absorption lines from quantitative reference spectra taken with the TDLAS instrument at different pressures and concentrations. The system was developed for the quantitation of gaseous constituents in a single puff of cigarette smoke and this paper will describe the procedure and some of the factors that influence the accuracy of quantitation for 1,3-butadiene, including the approach taken to minimize the adverse effects of the absorption due to propylene in the same spectral region.  相似文献   

11.
This paper reports on the use of 130Te2 absorption lines in active laser-locking, and in frequency referencing, of the emission of a violet extended cavity diode laser with a wavelength of around 410 nm. We note the existence of closely spaced tellurium absorption lines, suitable for referencing purposes in gas sensing applications, at wavelengths below the lower limit (417 nm) of the spectral region covered by the tellurium atlas [J. Cariou, P. Luc, Atlas du spectre d’Absorption de la Molecule de Tellure, CNRS, Paris, 1980]. The absolute positions of the lines in the acquired spectra were estimated by comparison to a simultaneously acquired fluorescence spectrum of atomic indium, and were identified using calculations based on fundamental spectroscopic data. The laser frequency was stabilised within a range of 40 MHz, which is negligible compared to typical transition widths at atmospheric pressure.  相似文献   

12.
Low-temperature RF discharges with methane as feed gas are widely used for the deposition of hydrogenated films. The film properties depend strongly on the chemical composition and therefore two of the main stable products in this kind of discharge, namely ethane (C(2)H(6)) and acetylene (C(2)H(2)), have been measured for the understanding of the reaction kinetics in the plasma. An absorption spectrometer has been built up for the investigation of the concentrations of these as a function of the input power and the flow rate. The time scales for reaching steady state after the discharge is switched on and the depletion time scale after the plasma is switched off have been determined. Assuming the recombination of CH(3) molecules to be the only production mechanism for C(2)H(6) and using a simplified rate equation, the measured densities of C(2)H(6) can be reproduced very well by analytical fitting curves.  相似文献   

13.
14.
The optical properties of a caesium atomic beam driven on a resonant hyperfine transition in the D2 line were studied as a function of the probe laser frequency. Using a third off-resonant laser system, a heterodyne interferometer allowed simultaneous absorption and phase shift measurements of either the probe or the coupling laser. The signal features of the probe and coupling laser transmitted intensities showed strong differences in the vicinity of the hyperfine transitions excited by the probe laser. Regular absorption signals and electromagnetically induced transparency were found in either transmitted intensities. Furthermore, light induced birefringence of the probe laser was measured.  相似文献   

15.
A compact fiber-optic diode laser spectrometer for the measurement of CO and CO(2) gas concentrations in the near infrared around 1580 nm is described. By use of a balanced receiver to suppress diode laser intensity noise a sensitivity of 6.4 x 10(-7) at 1 Hz system bandwidth was achieved. At a reduced pressure of 80 hPa this equals to a detection limit of 5.1 ppm CO and 9.1 ppm CO(2) with 1m absorption path length. The observed line shapes of the 2f wavelength modulation spectroscopy (WMS) scheme are analyzed theoretically and experimentally. Accurate measurements of magnitude and phase of the diode laser frequency and intensity modulation responses were found critically for modeling the observed line shapes. In situ measurements of gas dissociation processes inside of a medium-power carbon dioxide laser are presented as an application example.  相似文献   

16.
Free electron lasers (FELs) are new sources of tuneable coherent radiation, based on the interaction of a relativistic electron beam with a permanent magnetic field. The Super-ACO FEL operates in the UV (down to 300 nm) at 800 MeV, the nominal energy of the electron beam, with a high repetition rate (8 MHz). It presents a high average extracted power (up to 300 mW), short pulses (15–50 ps FWHM) and small bandwidth (3×10−2 nm). Taking advantage of these characteristics, we demonstrated for the first time the possibility of using a storage ring FEL as a coherent source of radiation for scientific applications. In particular, the tuneable Super-ACO FEL source, combined with synchrotron radiation covering the X-ray to infra-red range, is a unique tool for the time-dependent studies of excited states. Such analysis benefits from the natural synchronisation of both sources at a high repetition rate, their mutual tunability, high intensity and coherence. Several experimental set-ups are now under operation.  相似文献   

17.
Infrared photodissociation (IRPD) spectra of carbon dioxide cluster ions, (CO(2))(n) (+) with n=3-8, are measured in the 1000-3800 cm(-1) region. IR bands assignable to solvent CO(2) molecules are observed at positions close to the vibrational frequencies of neutral CO(2) [1290 and 1400 cm(-1) (nu(1) and 2nu(2)), 2350 cm(-1) (nu(3)), and 3610 and 3713 cm(-1) (nu(1)+nu(3) and 2nu(2)+nu(3))]. The ion core in (CO(2))(n) (+) shows several IR bands in the 1200-1350, 2100-2200, and 3250-3500 cm(-1) regions. On the basis of previous IR studies in solid Ne and quantum chemical calculations, these bands are ascribed to the C(2)O(4) (+) ion, which has a semicovalent bond between the CO(2) components. The number of the bands and the bandwidth of the IRPD spectra drastically change with an increase in the cluster size up to n=6, which is ascribed to the symmetry change of (CO(2))(n) (+) by the solvation of CO(2) molecules and a full occupation of the first solvation shell at n=6.  相似文献   

18.
The near infrared spectra (3800-10 500 cm(-1) of phenol-OH and phenol-OD are studied in carbon tetrachloride solution. The bandwidth of the v(OH) and v(OD) stretching vibrations increases with the vibrational quantum number in contrast to results obtained by nonresonant ionization spectroscopy (S.I. Ishiuchi et al., Chem. Phys. Lett. 283 (1998) 243). The bandwidth of the v(CH) vibrations obtained by a deconvolution procedure also increases with the frequencies associated with the vibrational transitions. The anharmonicity of the v(CH) vibrations ranges between 51 and 72 cm(-1). Numerous absorptions are observed in the near infrared spectra. These absorptions are tentatively assigned to combinations involving the fundamental transitions which have been recently calculated at different levels of theory (D. Michalska et al., J. Phys. Chem. 100 (1996) 17786). The experimental, theoretical and harmonic v(OH) and vi(CH) frequencies are compared.  相似文献   

19.
The widespread use of phytocannabinoids or cannabis extracts as ingredients in numerous types of products, in combination with the legal restrictions on THC content, has created a need for the development of new, rapid, and universal analytical methods for their quantitation that ideally could be applied without separation and standards. Based on previously described qNMR studies, we developed an expanded 1H qNMR method and a novel 2D-COSY qNMR method for the rapid quantitation of ten major phytocannabinoids in cannabis plant extracts and cannabis-based products. The 1H qNMR method was successfully developed for the quantitation of cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabichromenic acid (CBCA), cannabigerol (CBG), cannabigerolic acid (CBGA), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabinolic acid (Δ9-THCA), Δ8-tetrahydrocannabinol (Δ8-THC), cannabielsoin (CBE), and cannabidivarin (CBDV). Moreover, cannabidivarinic acid (CBDVA) and Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA) can be distinguished from CBDA and Δ9-THCA respectively, while cannabigerovarin (CBGV) and Δ8-tetrahydrocannabivarin (Δ8-THCV) present the same 1H-spectra as CBG and Δ8-THC, respectively. The COSY qNMR method was applied for the quantitation of CBD, CBDA, CBN, CBG/CBGA, and THC/THCA. The two methods were applied for the analysis of hemp plants; cannabis extracts; edible cannabis medium-chain triglycerides (MCT); and hemp seed oils and cosmetic products with cannabinoids. The 1H-NMR method does not require the use of reference compounds, and it requires only a short time for analysis. However, complex extracts in 1H-NMR may have a lot of signals, and quantitation with this method is often hampered by peak overlap, with 2D NMR providing a solution to this obstacle. The most important advantage of the COSY NMR quantitation method was the determination of the legality of cannabis plants, extracts, and edible oils based on their THC/THCA content, particularly in the cases of some samples for which the determination of THC/THCA content by 1H qNMR was not feasible.  相似文献   

20.
The structure of the copper(ii) complex with dithizone (H2Dz) was studied by ESR spectroscopy. The lines of the ESR spectra of the Cu(HDz)2 complex in solutions are so broad that the superhyperfine structure (SHFS) from the ligand atoms is unobservable and even the hyperfine structure (HFS) from the copper nuclei is poorly resolved. In polycrystalline magnetically dilute powders with the ratio Ni(HDz)2 : Cu(HDz)2 = 60 : 1, the SHFS from the N atoms is well resolved in both perpendicular and parallel orientations. The copper(ii) complex with dithizone has a square-planar structure in both liquid solutions and Ni(HDz)2 matrix. Reasons for the unusual linewidths in the ESR spectra of Cu(HDz)2 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号