首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Abstract— The clinically important phenothiazine drugs, particularly chlorpromazine, often elicit phototoxic and photoallergic reactions. We have used the spin traps 2-methyl-2-nitrosopropane (MNP) and 5,5-dimethyl-pyrroline-N-oxide (DMPO) to define the radical photolysis pathways of chlorpromazine and promazine. In the absence of oxygen the dechlorination product of chlorpromazine is trapped by MNP. The reactivity of the dechlorination product is similar to that of the phenyl radical as shown by its ability to extract hydrogen atoms from donors. Our results suggest that the dechlorination product is sufficiently reactive to account for the observation that chlorpromazine is more phototoxic than its parent promazine. In the presence of oxygen both chlorpromazine and promazine form a superoxide-dismutase-insensitive oxygen-centered intermediate which, when trapped by DMPO, rapidly decays to DMPO-OOH and subsequently to DMPO-OH. In addition, chlorpromazine readily undergoes photoelectron ejection only when it is excited into the second excited singlet state (Δ < 280 nra). This previously unknown wavelength dependence of photoionization should be considered in establishing the mechanism of chlorpromazine photosensitization.  相似文献   

2.
RETINAL SENSITIZED PHOTODYNAMIC DAMAGE TO LIPOSOMES   总被引:2,自引:0,他引:2  
Abstract. All trans -retinal has been introduced (2 mol %) into artificial membranes made up of egg lecithin, cholesterol and dicetyl phosphate. Illumination of retinal-enriched liposomes at 365 nm induced photodynamic damages; it triggered the sensitized oxidation of the lipids measured by the appearance of a 233 nm absorption band or by the formation of malonyl dialdehyde. Illumination produced an increase of the membrane fluidity detected with the spin label technique and led also to the lysis of the liposomes as revealed by the release of entrapped chromate ions or by changes in light scattering. Singlet oxygen is involved in these photodynamic effects. The results have been discussed in connection with the light damage phenomena which may afflict the rod outer segment membranes.  相似文献   

3.
Abstract— Ultraviolet-A irradiation of a suprofen (2-[4-(2-thenoyl)phenyl]propionic acid) (SPF) buffered solution (pH 7.4) in the presence of supercoiled pBR322 DNA leads to single strand breaks with the formation of an open circular form and subsequent linearization of the plasmid. On the basis of agarose gel electrophoresis data of samples irradiated in an air-saturated solution or in an oxygen-modified atmosphere, and the effects of sodium azide, D2O, mannitol, copper(II), superoxide dismutase, 2-H-propanol, deferoxamine and surfactants, we suggest a photosensitization mechanism involving singlet oxygen and free radicals. The higher rate of photocleavage in nitrogen compared to that in an air-saturated solution and the results obtained from oxygen consumption measurements support the hypothesis that both the type I and type II photosensitization mechanisms are operative and that oxygen quenches the excited state of the irradiated drug. The photosensitization model applied was in agreement with that previously applied to cell membrane SPF photoinduced damage. Interaction of the drug with DNA, studied through circular dichroism and fluorescence anisotropy, probably occurs through a surface binding mode. The experimental techniques used for assessing the photodamaging activity of this drug may be useful for screening of phototoxic compounds in the environment and for determining the active species involved.  相似文献   

4.
The mechanisms that trigger the phototoxic response to 2-chlorophenothiazine derivatives are still unknown. To better understand the relationship between the molecular structure of halogenated phenothiazines and their phototoxic activity, their photophysics and photochemistry were studied in several alcohols. The photodestruction quantum yields were determined under anaerobic conditions using monochromatic light (313 nm). Absorption- and emission-spectroscopy, 1H- and 13C-NMR and GC-MS were used to characterize the photoproducts and reference compounds. An electron transfer mechanism had been previously proposed by Bunce et al . ( J. Med. Chem . 22 , 202–204) to explain the large difference between the photodestruction quantum yield of 2-chlorpromazine (φ = 0.46) and 2-chlorphenothiazine (φ = 0.20). According to these authors, the alkylamino chain transfers an electron to the phenothiazine moiety. Our results demonstrate that this mechanism is incorrect, because the photodestruction quantum yields of all chlorinated derivatives of this study are the same under the same conditions of solvent and irradiation wavelength. The quantum yield has no dependence on the 10-substituent, but it depends on the solvent. The percentage of each photoproduct, on the other hand, strongly depends on that substituent, but not very much on the solvent. Finally, it is demonstrated that the phototoxic effect of chlorinated phenothiazines is not related to the photodechlorination, although both processes share the same transient.  相似文献   

5.
Abstract— The photobinding of phenothiazine derivatives (chlorpromazine, fluphenazine, promazine and promethazine) was studied on four different types of biological membranes (microsomes, myelin and synaptosomes from rat brain as well as human erythrocytes). The photoreaction was performed by ultraviolet irradiation of the tritiated compounds in their long wavelength absorption band (313 nm) and bound photoproducts were analysed by autoradiography of the proteins separated by polyacrylamide gel electrophoresis. The specificity of binding is low, however, a 34000 dalton band is intensely labeled on synaptic membranes with chlorpromazine and fluphenazine. All the phenothiazines bind on erythrocyte membrane proteins and specially on band 4.2 and on a peptide located before actin on the electrophoresis gel. These results show the generality of the phenothiazine photobinding on membrane proteins. These photobinding properties can be used for the identification and localization of some of these proteins.  相似文献   

6.
There is evidence indicating that the cellular locus of PDT action by amphiphilic sensitizers are the cellular membranes. The photosensitization process causes oxidative damage to membrane components that can result in the cell's death. However, it was not yet established whether lipid oxidation can cause free passage of molecules through the membrane and, as a result, be the primary cause of the cell's death. In this work, we studied the effect of liposomes' lipid composition on the kinetics of the leakage of three fluorescent dyes, calcein, carboxyfluorescein and DTAF, which were trapped in the intraliposomal aqueous phase, after photosensitization with the photosensitizer deuteroporphyrin. We found that as the degree of fatty acid unsaturation increased, the photosensitized passage of these molecules through the lipid bilayer increased. We also found that the rate of leakage of these molecules was affected by their size and bulkiness as well as by their net electric charge. In liposomes that are composed of a lipid mixture similar to that of natural membranes, the observed passage of molecules through the membrane is slow. Thus, the photodynamic damage to lipids does not appear to be severe enough to be an immediate, primary cause of cell death in biological photosensitization.  相似文献   

7.
Radiation oxidative damage to plasma membrane and its consequences to cellular radiosensitivity have received increasing attention in the past few years. This review gives a brief account of radiation oxidative damage in model and cellular membranes with particular emphasis on results from our laboratory. Fluorescence and ESR spin probes have been employed to investigate the structural and functional alterations in membranes after y-irradiation. Changes in the lipid bilayer in irradiated unilamellar liposomes prepared from egg yolk lecithin (EYL) were measured by using diphenylhexatriene (DPH) as a probe. The observed increase in DPH polarization and decrease in fluorescence intensity after γ-irradiation of liposomes imply radiation-induced decrease in bilayer fluidity. Inclusion of cholesterol in liposome was found to protect lipids against radiation damage, possibly by modulation of bilayer organization e.g. lipid packing. Measurements on dipalmitoyl phosphatidylcholine (DPPC) liposomes loaded with 6-carboxyfluorescein (CF) showed radiation dose-dependent release of the probe indicating radiation-induced increased permeability. Changes in plasma membrane permeability of thymocytes were monitored by fluorescein diacetate (FDA) and induced intracellular reactive oxygen species (ROS) were determined by 2,7-dichlorodihydro fluorescein diacetate (DCH-FDA). Results suggest a correlation between ROS generation and membrane permeability changes induced by radiation within therapeutic doses (0-10 Gy). It is concluded that increase in membrane permeability was the result of ROS-mediated oxidative reactions, which might trigger processes leading to apoptotic cell death after radiation exposure.  相似文献   

8.
The effect of the symmetry and polarity of the porphyrin molecules on their membrane localization and interaction with membrane lipids were investigated by electron paramagnetic resonance (EPR). For this purpose, two glycoconjugated tetraphenyl porphyrin derivatives were selected, respectively, symmetrically and asymmetrically substituted. Small unilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and spin labeled stearic acids were prepared. The spin probe was located at the 5th or 7th or 12th or 16th position of the hydrocarbon chain in order to monitor various regions of the lipid bilayer. EPR spectra of porphyrin-free and porphyrin-bound liposomes were recorded at various temperatures below and above the phase transition temperature of DPPC. The effect on membrane fluidity proved to be stronger with the asymmetrical porphyrin derivative than with the symmetrical one. The rigidity increased when the spin label was near lipid head groups. The difference observed between control and porphyrin-treated samples when measured below the main lipid transition temperature disappeared at higher temperature. When the spin label was near the end of the hydrophobic tails, the symmetrical porphyrin derivative caused increase in fluidity, while the asymmetrical one slightly decreased it. To explain this phenomenon we propose that the asymmetrical derivative exerts a stronger ordering effect caused by its fluorophenyl group located at the level of the lipid heads, which is attenuated to the hydrophobic tails. The perturbing effect of the symmetric derivative could not lead to similar extent of ordering at the head groups and looses the hydrocarbon chains deeper in the membrane.  相似文献   

9.
Singlet oxygen, created in photosensitization, peroxidizes unsaturated fatty acids of the membrane's lipids. This generates alcoholic or aldehyde groups at double bonds' breakage points. In a previous study, we examined the leakage of a K+‐induced cross‐membrane electric potential of liposomes that undergo photosensitization. The question remains to what extent peroxidized lipids can compromise the stability of the membrane. In this study, we studied the effect of the oxidatively modified lipids PGPC and ALDOPC in the membrane on its stability, by monitoring the membrane electric potential with the potentiometric dye DiSC2(5). As the content of the modified lipids increases the membrane becomes less stable, and even at just 2% of the modified lipids the membrane's integrity is affected, in respect to the leakage of ions through it. When the liposomes that contain the modified lipids undergo photosensitization by hematoporphyrin, the lipid bilayer becomes even more unstable and passage of ions is accelerated. We conclude that the existence of lipids with a shortened fatty acid that is terminated by a carboxylic acid or an aldehyde and more so when photosensitized damage occurs to unsaturated fatty acids in lecithin, add up to a critical alteration of the membrane, which becomes leaky to ions.  相似文献   

10.
Ultraviolet radiation (UVR) is one of the risk factors for skin cancer and the main inducer of melanin pigmentation, the major protective mechanism of mammalian skin against radiation damage. The melanin pigments, eumelanin and pheomelanin, are likely to be important in protection against UVR, but their precursors are generally considered as phototoxic. The available data suggest DNA damage as the mechanism of phototoxicity. However, the effect of melanin precursors on membrane damage through lipid peroxidation, another important and probably more relevant (from the point-of-view of the melanosomal confinement of these molecules) mechanism of phototoxicity, is not known. As a model system for UVR–melanin–membrane interactions, we irradiated liposomes in the presence of eumelanin, pheomelanin and two of their major precursors, 5,6-dihydroxyindole (DHI) and 5-S-cysteinyldopa (SCD). The presence of the two melanin precursors substantially reduced the formation of lipid peroxidation products resulting from UVR exposure. The antioxidant activity of the melanin precursors was diminished under strong prooxidant conditions (presence of Fe3+). These results suggest that melanin precursors may have an important role in the protection of skin against the harmful effects of UVR including photocarcinogenesis.  相似文献   

11.
Abstract— The photoexcited chlorpromazine reacts with methanol to yield promazine and 2-methoxypromazine by two different reaction pathways: hydrogen atom abstraction and nucleophilic attack. respectively. When the photoexcitation of chlorpromazine is performed in the presence of protein or nucleic acids, chlorpromazine binds to the biopolymer. This binding is drastically pH-dependent and correlates to the phototoxic effect exhibited in chlorpromazine—photosensitization of E. coli. No photodynamic damage of E. coli attributed to CPZ-sensitization of molecular oxygen could be detected.  相似文献   

12.
Singlet-oxygen (1O2) was generated in the gas phase by heterogeneous photosensitization and bubbled into suspensions of phosphatidylcholine (PC) liposomes. Lipid peroxidation and membrane lysis were observed, and were dependent on the 1O2 concentration and the degree of unsaturation of the liposome. An analysis based on large target diffusion theory indicates that approximately 5000, 2800, and 1600 interactions were required for the lysis of large dioleoylPC, dilinoleoylPC and dilinolenoylPC liposomes, respectively.  相似文献   

13.
We have synthesized a series of symmetrical phenothiazines in which the methyl groups of methylene blue have been substituted by longer alkyl chains. Intrinsic photosensitizing ability was not altered by increasing the chain length. However, in vitro phototoxicity after 2 h incubation of RIF-1 murine fibrosarcoma cells followed the order n-propyl > n-pentyl > n-butyl > n-hexyl > ethyl > methyl, with ethyl and n-propyl analogues being 14- and 130-fold more phototoxic than methylene blue, respectively. All analogues also had an improved ratio of phototoxicity: dark toxicity (4:1 to 27:1) compared with methylene blue (3:1). Phototoxicity did not correlate with cellular phenothiazine levels, suggesting that the site of subcellular localization may be more important. After 2 h incubation of RIF-1 cells with the phototoxicity LD50 concentration, methylene blue and all analogues were observed to be localized in the lysosomes by fluorescence microscopy. On exposure to light, methylene blue relocalized to the nucleus, the ethyl analogue did not relocalize, whereas the more phototoxic n-propyl - n-hexyl analogues relocalized to the mitochondria. Relocalization to the mitochondria was associated with an octanol: buffer partition coefficient > or = 1. Therefore, the longer-chain analogues of methylene blue show significantly improved phototoxicity in vitro and, in addition, are expected to avoid the problems of mutagenicity associated with the nuclear localization of methylene blue.  相似文献   

14.
Pournaghi-Azar MH  Farhadi K 《Talanta》1997,44(10):1773-1781
The reaction between tetrabutylammonium periodate and phenothiazine in the presence of the strong acids in chloroform was studied by potentiometry and the reaction pathways were determined. The oxidimetric titration conditions of phenothiazine derivatives using a standardized chloroform solution of tetrabutylammonium periodate were optimized and a potentiometric detection of end points was utilized. The relative standard deviation for the determination of 5 mg phenothiazines was obtained about 1-1.5%. The method was applied for the determination of phenothiazines in various pharmaceutical preparations after extraction into chloroform.  相似文献   

15.
Abstract— This study investigates the importance of DNA damage in viral inactivation by phenothiazines and light. Phenothiazines, including methylene blue (MB), toluidine blue and azure B are of particular interest because of their ability to bind to nucleic acids in vitro. Initial studies employing phages T7, MS2 and PM2 indicated that both DNA and RNA phages as well as enveloped and nonenveloped phages can be inactivated by phenothiazine photosensiti-zation. PM2, which contains a lipid-protein bilayer and supercoiled DNA, was used for the mechanistic studies to model blood-borne viruses. Viral DNA damage was assessed following treatment of phage to known levels of viral inactivation by extracting the DNA and analyzing for both direct and piperidine-catalyzed strand cleavage by gel electrophoresis. DNA strand cleavage was found to be both sensitizer concentration and light dose dependent. Both viral inactivation and DNA damage were found to be oxygen-dependent events. In parallel experiments, strand cleavage of isolated PM2 DNA treated with MB and light was also found to be oxygen dependent, in contrast to some previous reports. Transfection studies, which measure the infectivity of the extracted viral DNA, indicated that DNA from MB-treated phage was just as capable of generating progeny virus as the untreated controls. It was therefore concluded that the observed DNA damage is not correlated with loss of phage infectivity.  相似文献   

16.
Azines derivatives of phenothiazines were synthetically constructed from one-pot multicomponent reactions of 1-(4a,10a-dihydro-10H-phenothiazin-2-yl)ethan-1-one with various reagents. The obtained novel target compounds were evaluated as antioxidant agents using ABTS+• scavenging assay. Antioxidant results revealed that the incorporation of azines to phenothiazine ring system enhanced the activity. In addition, compound 18 prevent the damage of DNA due to the formation of bleomycin-iron complex more than the standard compound.  相似文献   

17.
A first post-column chemical derivatization method for the liquid chromatographic determination of phenothiazines is presented. Peroxyacetic acid is introduced as a derivatizing agent for phenothiazines, yielding the colored radical cations or fluorescent sulfoxides, depending on reaction conditions. Both reaction products were successfully employed for the detection of the phenothiazines after their liquid chromatographic separation. The fluorescence spectroscopic detection of the sulfoxides proved to be the more robust and sensitive method. Limits of detection ranged from 4 nM for triflupromazine and trimeprazine to 300 nM for phenothiazine for the fluorescence spectroscopic detection of the sulfoxide and from 0.3 μM for phenothiazine and triflupromazine to 2 μM for trifluperazine for the UV–Vis spectroscopic detection of the radical cation. The calibration functions for the fluorimetric sulfoxide determination ranged from two to more than three decades, starting at the limit of quantification.  相似文献   

18.
Fluoroquinolone (FQ) antibacterials are known to exhibit photosensitization properties leading to the formation of oxidative damage to DNA. In addition, photoexcited lomefloxacin (Lome) was recently shown to induce the formation of cyclobutane pyrimidine dimers via triplet-triplet energy transfer. The present study is aimed at gaining further insights into the photosensitization mechanisms of several FQ including enoxacin (Enox), Lome, norfloxacin (Norflo) and ofloxacin (Oflo). This was achieved by monitoring the formation of DNA base degradation products upon UVA-mediated photosensitization of 2'-deoxyguanosine, isolated and cellular DNA. Oflo and Norflo act mainly via a Type-II mechanism whereas Lome and, to a lesser extent, Enox behave more like Type-I photosensitizers. However, the extent of oxidative damage was found to be relatively low. In contrast, it was found that cyclobutane thymine dimers represent the major class of damage induced by Enox, Lome and Norflo within isolated and cellular DNA upon UVA irradiation. This striking observation confirms that FQ are able to promote efficient triplet energy transfer to DNA. The levels of photosensitized formation of strand breaks, alkali-labile sites and oxidative damage to cellular DNA, as measured by the comet assay, were confirmed to be rather low. Therefore, we propose that the phototoxic effects of FQ are mostly accounted for energy transfer mechanism rather than by Type-I or -II photosensitization processes.  相似文献   

19.
Thioridazine is a phenothiazine derivative that has been used as an antipsychotic; it rarely causes photosensitization. However, we noticed that this drug induced an erythematous reaction in a photopatch test. Six volunteers were patch tested with various concentrations of thioridazine and irradiated with a range of UVA doses, and the time courses of the color of and blood flow to the test sites were monitored. The free-radical metabolites of thioridazine generated under UVA irradiation and its effects on ascorbate radical formation were examined with an electron paramagnetic resonance (EPR) spectrometer in vitro. As a result, immediate erythema developed during UVA irradiation in most subjects when 1% thioridazine was applied for 48 h and irradiation doses were higher than 4 J cm(-2). Another peak of erythematous reaction was observed 8-12 h after irradiation. The in vitro examination detected an apparent EPR signal, which appeared when 2 mM thioridazine in air-saturated phosphate buffer was irradiated with UVA, whereas this reaction was attenuated under anaerobic conditions. The EPR signal of the ascorbate radical was augmented under both aerobic and anaerobic conditions. Thioridazine-derived oxidants and/or thioridazine radicals generated during UVA irradiation seem to play an important role in this unique phototoxic reaction.  相似文献   

20.
Abstract Balb/c mice bearing a transplanted MS-2 fibrosarcoma were injected with 2.5 mg kg 1 of either tetra(4-sulfonatophenyl/porphine (TPPS) in phosphate-buffered saline or 0.5 mg kg−1 of Zn2+-phthalocyanine (Zn-Pc) incorporated into unilamellar liposomes of dipalmitoyl-phosphatidylcholine. Chromatographic studies showed that TPPS is mainly transported in the serum by globulins and albumin, while Zn-Pc is specifically bound by lipoproteins. Exposure of the injected mice to red light (300 J cm−2) caused extensive tumor necrosis. The ultrastructural analysis of tumor specimens taken from mice at 15 h after PDT showed that TPPS photoinduces a preferential necrosis of the neoplastic cells, while Zn-Pc causes severe photodamage to both the vascular system and the neoplastic cells. The different modes of tumor photosensitization by TPPS and Zn-Pc are discussed on the basis of the transport mechanism of the two dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号