首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hole diameter effect on the flow characteristics of wake behind porous fences has been investigated experimentally in a circulating water channel having a test section of 300w×200h×1200l (mm). Three porous fences having different hole diameters of d=1.4,2.1,2.8 mm were tested in this study, but they have the same =38.5% geometric porosity. One thousand instantaneous velocity fields for each fence were measured consecutively by the hybrid PTV system employing a high-speed CCD camera. Free stream velocity was fixed at 10 cm/sec and the corresponding Reynolds number based on the fence height was Re=2,985. Consequently, the fence with the smallest hole diameter d=1.4 mm (d1.4) decreases the streamwise velocity component and increases the vertical velocity component. Among the three hole diameters tested in this study, the d1.4 fence has the largest turbulence intensity in the shear layer developed from the fence top. Regardless of the hole diameter, however, all three fences having the same porosity reduce the reduction of turbulent intensity in the lower region below the fence height (y/H<1).  相似文献   

2.
Inertial stability of a vertical shear layer (Stewartson E1/4-layer) on the sidewall of a cylindrical tank with respect to stationary axisymmetric perturbations is inverstigated by means of a linear theory. The stability is determined by two non-dimensional parameters, the Rossby number Ro = U/2ΩL and Ekman number E = vH2, where U and L = (E/4)1/4H are the characteristic velocity and width of the shear layer, respectively, Ω the angular velocity of the basic rotation, v the kinematic viscosity and H the depth of the tank.

For a given Ekman number, the flow is more unstable for larger values of the Rossby number. For E = 10−4, which is a typical value of the Ekman number realized in rotating tank experiments, the critical Rossby number Roc for instability and the critical axial wavenumber mc non-dimensionalized by L−1 are found to be 1.3670 and 8.97, respectively. The value of Roc increases and that of mc decreases with increasing E.  相似文献   


3.
A second order non-linear ordinary differential equation satisfied by a homogeneous function of u and v where u is a solution of the linear equation ÿ + p(t)ÿ + r(t)y = 0 and v = ωu, ω being an arbitrary function of t, is obtained. Defining ω suitably in two specific cases, solutions are obtained for a non-linear equation of the form ÿ + p(t)ÿ + q(t)y = μÿ2y−1 + f(t)yn where μ ≠ 1, n≠ 1. Applying our results, some classes of equations of the above type possessing solutions involving two or one or no arbitrary constants are derived. Some illustrative examples are also discussed.  相似文献   

4.
Nitrogen bubbles were emitted by a single horizontal orifice submerged in an aqueous solution of sodium carboxymethylcellulose (C.M.C.). Their behaviour follows the Ostwald Dé Waele rheological model: τ = mEon; τ is the shear stress and Eo the shear rate.  相似文献   

5.
Asymptotic soliton trains arising from a ‘large and smooth’ enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup–Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr–Sommerfeld quantization rule which generalizes the usual rule to the case of ‘two potentials’ h0(x) and u0(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u0(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup–Boussinesq equations with predictions of the asymptotic theory is found.  相似文献   

6.
To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar–turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Reω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (uk), and decreases to 1.2uk, which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and :β:γ = −5:1:4 in the transition process. In addition to Kelvin–Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow.  相似文献   

7.
The wake structure of discs and bluff rings has been investigated experimentally in a wind tunnel. The rings have an inner diameter di, and an outer diameter do and are classified according to the parameter (do + di)/(dodi) = d/w. the ratio of mean diameter to ring width. As d/w → ∞ the flow approaches that around a two dimensional bluff body whereas as d/w tends to unity the body approaches a solid disc. A distinct change in the vortex shedding pattern is found around d/w = 5. Below this critical value velocity fluctuations in the wake have a weak periodic component which is 180° out of phase across a diameter of the body. Above d/w = 5. regular and coherent axisymmetric vortex ring shedding is observed with shedding occurring alternately from the inner and outer circumferences of the bluff body. Flow visualization and conditional averaging of hot-wire data are used to investigate the vortex structure.  相似文献   

8.
The existence and asymptotic behavior as ε → 0+ of periodic, almost periodic, and bounded solutions of the differential system x = f(t, x, y, ε), Ωy′ = g(t, x, y, ε), are considered where x, f; are n-vectors, y, g are m-vectors and Ω = diag{εh1}…, εhm for integral hi, h1 h2 …, hm. The principal tools are a lemma of Nagumo which allows the construction of appropriate upper and lower solutions and the asymptotic theory of singularly perturbed linear differential systems.  相似文献   

9.
The effect of the Reynolds number on vortical structures in a turbulent far-wake has been investigated for Red (based on the free stream velocity and the cylinder diameter) =2800 and 9750. Velocity data were obtained using two orthogonal arrays of 16 X-wires, eight in the (x,y)-plane and eight in the (x,z)-plane. Structures were detected in both planes using a technique based on vorticity concentration and circulation. Conditional streamlines and contours of vorticity based on spanwise structures, i.e. detections in the (x,y)-plane, reveal that the streamwise size of spanwise structures increases as Red increases. The interrelationship is investigated between detections simultaneously identified in the two planes. Transverse structures, i.e. detections in the (x,z)-plane, correspond, with a relatively high probability, to spanwise structures, in conformity with a distortion in the (y,z)-plane of spanwise structures. Those that correspond, with relatively high probability, to the saddle between consecutive spanwise structures are interpreted in terms of ribs, whose signatures are detectable in instantaneous data. The probability is also high for transverse structures to occur between the focus of a spanwise structure and its associated saddle when Red=9750, but not when Red=2800. This is consistent with an increased vortex pairing frequency at the higher Red, as observed in instantaneous sectional streamlines.  相似文献   

10.
Effect of the backward-facing step heights on turbulent mixed convection flow along a vertical flat plate is examined experimentally. The step geometry consists of an adiabatic backward-facing step, an upstream wall and a downstream wall. Both the upstream and downstream walls are heated to a uniform and constant temperature. Laser–Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the time-mean velocity and temperature distributions and their turbulent fluctuations. The experiment was carried out for step heights of 0, 11, and 22 mm, at a free stream air velocity, u, of 0.41 m/s, and a temperature difference, ΔT, of 30 °C between the heated walls and the free stream air. The present results reveal that the turbulence intensity of the streamwise and transverse velocity fluctuations and the intensity of temperature fluctuations downstream of the step increase as the step height increases. Also, it was found that both the reattachment length and the heat transfer rate from the downstream heated wall increase with increasing step height.  相似文献   

11.
An experimental investigation was carried out on the heat transfer due to a submerged slot jet of water impinging on a circular cylinder in crossflow. The cylinder diameter and the slot width are of the same order of magnitude, specifically Ds = 2.0 and 3.0 mm and Dc = 2.5 and 3.0 mm. The experimental apparatus allowed variation of the slot width, the cylinder diameter, and the distance from nozxle exit to heater. Conditions of impingement from the bottom (ascending flow) were taken into consideration as well as impingement from above (descending flow). The Nusselt number was determined as a function of Reynolds and Prandtl numbers in the range 1.5 × 103 < Re < 2.0 × 104, 2.7 < Pr < 7.0, and 1.5 ≤ z/Ds ≤ 10. The experimental data were correlated with a simple equation that fits 90% of the data with a precision of 20%.  相似文献   

12.
The lag-entrainment predictive scheme developed by Green et al. has been modified to include the pressure-gradient parameter Π1. In the original model suggested by Green et al. the mass-flow shape factor H1 is related to the common shape factor H, H1 = f(H). In the present model H1 is related to H, Reynolds number based on the local momentum thickness θ, and Π1; thus H1 = f(H, Reθ, Π1). The modified formula for H1, is introduced into the original lag-entrainment integral model. Calculations are made to examine the present model for the predictions of the development of boundary layers approaching separation studied experimentally by the authors. Slightly improved predictions are obtained using the model developed by El Telbany et al. However, the present model proved to give an improved representation of the development of wall shear stress in cases the two-equation turbulence model proved to be unsuccessful.  相似文献   

13.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


14.
Using two orthogonal arrays of 16 X-wires, eight in the (x,y)-plane and eight in the (x,z)-plane, the effect of the Reynolds number in a turbulent plane far-wake has been investigated for two values of Reθ (based on the free stream velocity and the momentum thickness), i.e. 1350 and 4600. It is observed that as the Reynolds number increases the magnitudes of the measured Reynolds stresses increase, as does the size of two-point vorticity correlation iso-contours. Discernible differences are also observed in probability density function, spectra and three-dimensional topologies. The Reynolds number dependence seems to vanish when Reθ5000.  相似文献   

15.
The structural character and steady-state statistics of the turbulence inside a rib-wall circular duct is investigated by the large-eddy simulation (LES) methodology. The impetus of this study is to gain an understanding of the principle physics attributing to minimizing the pressure recovered (or maximizing the pressure loss) within the core flow. For a rib periodicity with height (h) to pitch (p) ratio p/h=5, the computational results show that the majority of turbulence produced due to the rib’s presence is concentrated near the rib crest leading edge. Pairs of counter-rotating streamwise vortices form soon after the leading edge that are quickly convected radially toward the core flow. The turbulent activity within the duct trough region is negligible compared to the turbulence levels of the core flow. At this rib periodicity, the separated shear layers from the trailing edge of each rib nearly reattach to the trough floor before reaching the next rib. The resultant irrecoverable pressure loss in the form a centerline frictional coefficient is verified by an ‘at-sea’ test on board a US Navy submarine. Based on the duct diameter, their Reynolds numbers are ReDLES=8×103 and (ReDexp)avg=4×106, respectively.  相似文献   

16.
In this paper, pressure spectra have been derived from the authors’ model (Eur. J. Mech., B/Fluids 12 (1) (1993) 31–42) developed by means of rapid distortion theory (RDT) of homogeneous low Reynolds number turbulent shear flow subjected to weak rotation. The combined effects of uniform shear dU1/dx2 and weak rotation Ω3 on the evolution of pressure spectra have been examined in terms of the rotation number 2Ω3/(dU1/dx2). It is found that the system rotation exhibits the opposite effect on the pressure field as compared with the influence of rotation on the velocity fluctuations.  相似文献   

17.
The development of streamwise orientated disturbances through the boundary layer thickness prior to transition onset for zero-pressure gradient boundary layer flow under the influence %Tu = 4.2 is presented. The analysis concentrates on the development of the maximum positive and negative of the fluctuation velocity in order to gain further insight into the transition process. The average location of the peak negative fluctuation velocity over a range of Reynolds numbers was measured in the upper portion of the boundary layer at y/δ ≈ 0.6, whereas the location of the peak positive value was measured at y/δ ≈ 0.3. The disturbance magnitude of the negative fluctuation velocity increased beyond that of the positive as transition onset approached. The distribution and disturbance magnitude of the maximum positive and negative fluctuation velocities indicate that the initiation of transition may occur on the low-speed components of the flow that are lifted up to the upper region of the boundary layer. This is in qualitative agreement with recent direct numerical simulations on the breakdown of the flow on the lifted low-speed streaks near the boundary layer edge. The results presented in this investigation also demonstrate the increased physical insight gained by examining the distributions of the maximum positive and negative of the streamwise fluctuation velocity component associated with the low- and high-speed streaks, compared to time-averaged values, in determining what structures cause the breakdown to turbulence.  相似文献   

18.
Instability of two-dimensional periodic flows with rhombic cell structure represented by the stream function Ψ=cos kx+cosy is investigated. Stability characteristics are obtained for the Reynolds number R=1, 2, 3 and 4 and the ratio of the diagonals of the cell . Variation of the critical Reynolds number Rc with k is obtained, and the square cell flow (k=1) is found to be most stable (Rc=√2). It is found that Rc → 1 as k → 0, which leads to a finite gap between this limiting Rc and Rc=√2 for K=0 (Ψ=cos y).  相似文献   

19.
K. Murawski 《Wave Motion》1987,9(6):499-507
Instabilities of the generalized Korteweg-de Vries ((ut+1umux+2unux+uxxx)x+3uyy = 0) waves wi th respect to two-dimensional infinitesimal longitudinal disturbances are investigated using the Infeld-Rowlands method. A linear dispersion relation expressed as a cubic equation in w1 is derived and instabilities of waves are discussed.  相似文献   

20.
A theory of atmospheric icing due to freezing rain on an overhead line conductor (OHLC) is developed. The rain falls vertically on a horizontal OHLC that is thermally insulated. It is assumed that the collection efficiency of the accretion surface is unity and that this surface is in thermodynamic equilibrium with the environment.

For air temperature TA 0°C and raindrop temperature TD 0°C, the freezing rain accretes as rime ice, provided that the temperature of the ice surface Tl < 0°C. The evolution equation governing the mass transfer at the accretion surface is solved analytically, yielding the shape of the rime-ice surface. Equations governing the thermal state of the rime-ice deposit are also given. These determine the onset of wet growth or glaze accretion at the upper stagnation line during suitable environmental conditions.

For environmental conditions producing an ice surface at temperature Tl = 0°gC, the freezing accretes as glaze. Equations governing the heat and mass transfer at the surface determine the shape of the glaze surface and the downward viscous motion of the unfrozen water. For TD < 0°C, glaze evolution equations are developed for TA 0°C and TA 0°C. Analytical solutions of these equations are obtained. In particular, when TD < −TA < 0°C, the evolution equation predicts a novel limiting growth that is triangular in shape. Further study of the mass and heat transfer conditions, in the neighborhood of this final stage of glaze accretion, shows that it is maintained in thermodynamic equilibrium with its warm air environment.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号