首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The observations of Type Ia supernovae (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background radiation (CMB) provide powerful tools for the measurement of cosmological parameters. One of the most useful information encodes in the distance measured by those probes. In this Letter, we test the coherence of the observational information provided by SN Ia, BAO and CMB experiments. We make two kinds of comparison: the first is the constraints on cosmological parameters of the equation of state parameter (EoS) of dark energy (DE) and matter budget parameter ΩmΩm from the latest data by global fitting, and we find the large discrepancy from those different probes. The second comparison is performed among the derived distance information from these observations at certain appointed redshift, the results show that the distance provided by WMAP5 are larger than those from SN Ia and BAO on the whole.  相似文献   

2.
In this work, we explore the cosmological implications of different baryon acoustic oscillation(BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering(GC) statistics(hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics(hereafter BAO2). To make a comparison, we also take into account the case without BAO data(hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the w CDM, and the Chevallier-Polarski-Linder(CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state(Eo S), figure of merit(Fo M), deceleration-acceleration transition redshift,Hubble parameter H(z), deceleration parameter q(z), statefinder hierarchy S_3(1)(z), S_4(1)(z) and cosmic age t(z). We find that:(1)NO BAO data always give a smallest fractional matter density ?_(m0), a largest fractional curvature density ?k0and a largest Hubble constant h; in contrast, BAO1 data always give a largest ?_(m0), a smallest ?_(k0) and a smallest h.(2) For the w CDM and the CPL model, NO BAO data always give a largest Eo S w; in contrast, BAO2 data always give a smallest w.(3) Compared with the case of BAO1, BAO2 data always give a slightly larger Fo M, and thus can give a cosmological constraint with a slightly better accuracy.(4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.  相似文献   

3.
FRW universe in Horava-Lifshitz (HL) gravity model filled with a combination of dark matter and dark energy in the form of variable modified Chaplygin gas (VMCG) is considered. The permitted values of the VMCG parameters are determined by the recent astrophysical and cosmological observational data. Here we present the Hubble parameter in terms of the observable parameters Ω d m0, Ω v m c g0, H 0, redshift z and other parameters like α, A, γ and n. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best-fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters (A, γ) by fixing some other parameters α and n. The best fit value of distance modulus μ(z) is obtained for the VMCG model in HL gravity, and it is concluded that our model is perfectly consistent with the union2 sample data.  相似文献   

4.
We use the Radial Baryon Acoustic Oscillation (RBAO) measurements, distant type Ia supernovae (SNe Ia), the observational H(z)H(z) data (OHD) and the Cosmic Microwave Background (CMB) shift parameter data to constrain cosmological parameters of ΛCDMΛCDM and XCDM cosmologies and further examine the role of OHD and SNe Ia data in cosmological constraints. We marginalize the likelihood function over h   by integrating the probability density P∝e−χ2/2Peχ2/2 to obtain the best fitting results and the confidence regions in the Ωm–ΩΛΩmΩΛ plane. With the combination analysis for both of the ΛCDMΛCDM and XCDM models, we find that the confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMBOHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMBIa+RBAO+CMB data which is consistent with the result of Lin et al.'s (2009) [24] work. With more data of OHD, we can probably constrain the cosmological parameters using OHD data instead of SNe Ia data in the future.  相似文献   

5.
We study one of the simplest covariant modified-gravity models based on the Dvali-Gabadadze-Porrati (DGP) brane cosmology, a self-accelerating universe. In this model gravitational leakage into extra dimensions is responsible of late-time acceleration. We mainly focus on the effects of the model parameters on the geometry and the age of universe. Also we investigate the evolution of matter density perturbations in the modified gravity model, and obtain an analytical expression for the growth index, f. We show that increasing leads to less growth of the density contrast δ, and also decreases the growth index. We give a fitting formula for the growth index at the present time and indicate that dominant term in this expression verifies the well-known approximation relation f≃Ω m γ . As the observational test, the new Supernova Type Ia (SNIa) Gold sample and Supernova Legacy Survey (SNLS) data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the position of the acoustic peak from the CMB observations and the Cluster Baryon Gas Mass Fraction (gas) are used to constrain the parameters of the DGP model. We also combine previous results with large scale structure formation (LSS) from the 2dFGRS survey. Finally to check the consistency of the DGP model, we compare the age of old cosmological objects with age of universe in this model.  相似文献   

6.
We use recent data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the three-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z) data, to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z) data to constrain the parameterized deceleration parameter, we obtain the best-fit values of the transition redshift and current deceleration parameter z T=0.632−0.127+0.256 and q 0=−0.788−0.182+0.182. Furthermore, using the ΛCDM model and two model-independent equations of state of the dark energy, we find that the combined constraint from the 192 ESSENCE data and four other cosmological observations gives smaller values for Ω 0m and q 0, but a larger value for z T than the combined constraint from the 182 Gold data with four other observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally support three dark energy models: ΛCDM, w de(z)=w 0 and w de(z)=w 0+w 1ln (1+z).  相似文献   

7.
The Sandage-Loeb(SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-α forest of distant quasars, covering the "redshift desert" of 2 z 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy(HDE) model and the Ricci holographic dark energy(RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density ?_(m0) and the Hubble constant H0 in other cosmological observations. For the considered two typical dark energy models, not only can a30-year observation of SL test improve the constraint precision of ?_(m0) and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.  相似文献   

8.
A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology. This density function is used in the luminosity distance relation D L. A heretofore neglected source luminosity correction factor (1 − (υ/c)2)−1/2 is now included in D L. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range of redshift 0.1 < z < 2. The best fit to the data for the local density parameter is Ωm = 0.0401 ± 0.0199. Because Ωm is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration is z t = 1.095+0.264 −0.155. Because the fitted data covers the range of the predicted transition redshift z t, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago.  相似文献   

9.
In the frame work of TREDER 's gravitational theory we consider two classes of field equations which are derivable from two classes of LAGRANGE ian densities Ω(1)1, ω2), Ω(2)(s?1, s?2). ω1, ω2; s?1, s?2 are parameters. Ω(2)1, ω2) gives us field equations which are up to the post-NEWTON ian approximation in the sense of NORDTVEDT , THORNE and WILL equivalent to the field equations given by BRANS and DICKE . For ω2 = ?1 ?2ω1 field equations follow from Ω(1)1, ?1 ?2ω1) which are in the above mentioned sense of post-NEWTON ian approximation equivalent to EINSTEIN 's equations. The field equations following from Ω(1)1, ω2) have a cosmological model with the well known cosmological singularities for T → ± ∞ in case that ω1/(1 +3ω12) ? γ > 0. For ω1/(1 +3ω12) ≤ 0 cosmological models with no cosmological singularities exist. From Ω(2)(s?1, s?2) we obtain field equations which at the best give us perihelion rotation 7% above EINSTEIN 's value and light deflection 7% below the corresponding EINSTEIN 's value. But in that case we are able to show the existence of a cosmological model without any cosmological singularity.  相似文献   

10.
The present study deals with a spatially homogeneous and anisotropic Bianchi type-I (B-I) cosmological models representing massive strings in normal gauge for Lyra’s manifold by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law type. Using these two forms, Einstein’s modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier, P.S.: Phys. Rev. D 28, 2414 (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ) in the model is proportional to the component s1 1\sigma^{1}_{~1} of the shear tensor sj i\sigma^{j}_{~i}. This condition leads to A=(BC) m , where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β behaves like cosmological term Λ in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the both decelerating and accelerating universes. The strings dominate in the early universe and eventually disappear from the universe for sufficiently large times. This is in consistent with the current observations. Some physical and geometric behaviour of these models are also discussed.  相似文献   

11.
We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy(HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m_(ν,sterile)~(eff) 0.2675 eV and N_(eff) 3.5718 for ΛCDM cosmology, m_(ν,sterile)~(eff) 0.5313 eV and N_(eff) 3.5008 for wCDM cosmology, and m_(ν,sterile)~(eff) 0.1989 eV and N_(eff) 3.6701 for HDE cosmology, from the constraints of the combination of these data. Thus, without the addition of measurements of growth of structure, only upper limits on both m_(ν,sterile)~(eff) and N_(eff) can be derived, indicating that no evidence of the existence of a sterile neutrino species with e V-scale mass is found in this analysis. Moreover, compared to the ΛCDM model, in the wCDM model the limit on m_(ν,sterile)~(eff) becomes much looser, but in the HDE model the limit becomes much tighter. Therefore, the dark energy properties could significantly influence the constraint limits of sterile neutrino parameters.  相似文献   

12.
Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.  相似文献   

13.
Gravitational field equations in Randers-Finsler space of approximate Berwald type are investigated. A modified Friedmann equation and a new luminosity distance-redshift relation is proposed. A best-fit to the Type Ia supernovae (SNe) observations yields that the ΩΛ in the Λ-CDM model is suppressed to almost zero. This fact indicates that the astronomical observations on the Type Ia SNe can be described well without invoking any form of dark energy. The best-fit age of the universe is given. It is in agreement with the age of our galaxy.  相似文献   

14.
The relic abundance of light millicharged particles (MCPs) with the electric charge e′ = 5 × 10–5 e and with the mass slightly below or above the electron mass is calculated. The abundance depends on the mass ratio η = m X /m e and for η < 1 can be high enough to allow MCPs to be the cosmological dark matter or to make a noticeable contribution to it. On the other hand, for η ? 1 the cosmological energy density of MCPs can be quite low, Ω X h 0 2 ≈ 0.02 for scalar MCPs, and Ω X h 0 2 ≈ 0.001 for spin 1/2 fermions. But even the lowest value of Ω X h 0 2 is in tension with several existing limits on the MCP abundances and parameters. However, these limits have been derived under some natural or reasonable assumptions on the properties of MCPs. If these assumptions are relaxed, a patch in the mass–charge plot of MCPs may appear, permitting them to be dark matter particles.  相似文献   

15.
Varun Sahni 《Pramana》2000,55(1-2):43-52
I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or A-term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe. A flat accelerating universe is strongly favoured by combining supernovae observations with observations of CMB anisotropies on degree scales which give the ‘best-fit’ values ΘA ⋍ 0.7 and Θ m ⋍ 0.3. A time dependent cosmological A-term can be generated by scalar field models with exponential and power law potentials. Some of these models can alleviate the ‘fine tuning’ problem which faces the cosmological constant.  相似文献   

16.
In this Letter we analyze the constraints on the property of dark energy from cosmological observations. Together with SNe Ia Gold sample, WMAP, SDSS and 2dFGRS data, we include 69 long Gamma-Ray Bursts (GRBs) data in our study and perform global fitting using Markov Chain Monte Carlo (MCMC) technique. Dark energy perturbations are explicitly considered. We pay particular attention to the time evolution of the equation of state of dark energy parameterized as wDE=w0+wa(1−a)wDE=w0+wa(1a) with a   the scale factor of the universe, emphasizing the complementarity of high redshift GRBs to other cosmological probes. It is found that the constraints on dark energy become stringent by taking into account high redshift GRBs, especially for wawa, which delineates the evolution of dark energy.  相似文献   

17.
Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observations and models of these events over the past 15 years. Here, we summarize new observational constraints, address recent progress in modeling Type Ia supernovae by means of three-dimensional hydrodynamic simulations, and discuss several of the still open questions. It will be be shown that the new models have considerable predictive power which allows us to study observable properties such as light curves and spectra without adjustable non-physical parameters. This is a necessary requisite to improve our understanding of the explosion mechanism and to settle the question of the applicability of SNe Ia as distance indicators for cosmology. We explore the capabilities of the models by comparing them with observations and we show how such models can be applied to study the origin of the diversity of SNe Ia.  相似文献   

18.
We investigate a second order parabolic parametrization,w(a)=wt+wa(at-a)2,which is a direct characterization of a possible turning in w.The cosmological consequence of this parametrization is explored by using the observational data of the SNLS3 type Ia supernovae sample,the CMB measurements from WMAP9 and Planck,the Hubble parameter measurement from HST,and the baryon acoustic oscillation(BAO)measurements from 6dFGS,BOSS DR11 and improved WiggleZ.We found the existence of a turning point in w at a~0.7 is favored at 1σCL.In the epoch 0.55a0.9,w-1 is favored at 1σCL,and this significance increases near a=0.8,reaching a 2σCL.The parabolic parametrization achieve equivalent performance to theΛCDM and Chevallier-Polarski-Linder(CPL)models when the Akaike information criterion was used to assess them.Our analysis shows the value of considering high order parametrizations when studying the cosmological constraints on w.  相似文献   

19.
林海南  李昕  桑语 《中国物理C(英文版)》2018,42(9):095101-095101
We constrain three cosmological models – the concordance cold dark matter plus cosmological constant(ΛCDM) model, the power-law(PL) model, and the Rh =ct model – using the available local probes, which include the JLA compilation of type-Ia supernovae(SNe Ia), the direct measurement of the Hubble constant(H_(z)), and the baryon acoustic oscillations(BAO). For the ΛCDM model, we consider two different cases, i.e. zero and non-zero spatial curvature. We find that by using the JLA alone, the ΛCDM and PL models are indistinguishable, but the Rh =ct model is strongly disfavored. If we combine JLA+H_(z), the ΛCDM model is strongly favored over the other two models. The combination of all three datasets supports ΛCDM as the best model. We also use the low-redshift(z 0.2) data to constrain the deceleration parameter using the cosmography method, and find that only the ΛCDM model is consistent with cosmography. However, there is no strong evidence to distinguish between flat and non-flatΛCDM models by using the local data alone.  相似文献   

20.
Recently, a new dark energy model called ΛHDE was proposed. In this model, dark energy consists of two parts: cosmological constant Λ and holographic dark energy(HDE). Two key parameters of this model are the fractional density of cosmological constant ?_(Λ0), and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ?_(Λ0) and c on the ΛHDE model. In this paper,we apply various DE diagnostic tools to diagnose ΛHDE models with different values of ?_(Λ0) and c; these tools include statefinder hierarchy{S_3~(1), S_4~(1)}, fractional growth parameter ?, and composite null diagnostic(CND), which is a combination of{S_3~(1), S_4~(1)}and ?. We find that:(1) adopting different values of ?_(Λ0) only has quantitative impacts on the evolution of the ΛHDE model, while adopting different c has qualitative impacts;(2) compared with S_3~(1), S_4~(1) can give larger differences among the cosmic evolutions of the ΛHDE model associated with different ?_(Λ0) or different c;(3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the ΛHDE model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号