首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups ?d. In this article we prove that for each d > 1 the set of Cayley graphs of ?d presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of ?d that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of ?d with crystallographic groups.  相似文献   

2.
For a connected finite graph G and a subset V0 of its vertex set, a distance-residual subgraph is a subgraph induced on the set of vertices at the maximal distance from V0. Some properties and examples of distance-residual subgraphs of vertex-transitive, edge-transitive, bipartite and semisymmetric graphs are presented. The relations between the distance-residual subgraphs of product graphs and their factors are explored.  相似文献   

3.
It is well known that the edge-connectivity of a simple, connected, vertex-transitive graph attains its regular degree. It is then natural to consider the relationship between the graph’s edge-connectivity and the number of orbits of its automorphism group. In this paper, we discuss the edge connectedness of graphs with two orbits of the same size, and characterize when these double-orbit graphs are maximally edge connected and super-edge-connected. We also obtain a sufficient condition for some double-orbit graphs to be λ-optimal. Furthermore, by applying our results we obtain some results on vertex/edge-transitive bipartite graphs, mixed Cayley graphs and half vertex-transitive graphs.  相似文献   

4.
Let V be a vector space of dimension v over a field of order q. The q-Kneser graph has the k-dimensional subspaces of V as its vertices, where two subspaces α and β are adjacent if and only if is the zero subspace. This paper is motivated by the problem of determining the chromatic numbers of these graphs. This problem is trivial when k=1 (and the graphs are complete) or when v<2k (and the graphs are empty). We establish some basic theory in the general case. Then specializing to the case k=2, we show that the chromatic number is q2+q when v=4 and (qv-1-1)/(q-1) when v>4. In both cases we characterise the minimal colourings.  相似文献   

5.
A characterization is given of the class of edge-transitive Cayley graphs of Frobenius groups \mathbbZpd:\mathbbZq\mathbb{Z}_{p^{d}}{:}\mathbb{Z}_{q} with p,q odd prime, of valency coprime to p. This characterization is then used to study an isomorphism problem regarding Cayley graphs, and to construct new families of half-arc-transitive graphs.  相似文献   

6.
《Discrete Mathematics》2004,274(1-3):187-198
Let p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215) that a regular edge-transitive graph of order 2p or 2p2 is necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given. It is proved that, with the exception of the Gray graph on 54 vertices, every cubic edge-transitive graph of order 2p3 is vertex-transitive.  相似文献   

7.
This paper concerns finite, edge-transitive direct and strong products, as well as infinite weak Cartesian products. We prove that the direct product of two connected, non-bipartite graphs is edge-transitive if and only if both factors are edge-transitive and at least one is arc-transitive, or one factor is edge-transitive and the other is a complete graph with loops at each vertex. Also, a strong product is edge-transitive if and only if all factors are complete graphs. In addition, a connected, infinite non-trivial Cartesian product graph G is edge-transitive if and only if it is vertex-transitive and if G is a finite weak Cartesian power of a connected, edge- and vertex-transitive graph H, or if G is the weak Cartesian power of a connected, bipartite, edge-transitive graph H that is not vertex-transitive.  相似文献   

8.
A graph is called almost self-complementary if it is isomorphic to one of its almost complements Xc-I, where Xc denotes the complement of X and I a perfect matching (1-factor) in Xc. Almost self-complementary circulant graphs were first studied by Dobson and Šajna [Almost self-complementary circulant graphs, Discrete Math. 278 (2004) 23-44]. In this paper we investigate some of the properties and constructions of general almost self-complementary graphs. In particular, we give necessary and sufficient conditions on the order of an almost self-complementary regular graph, and construct infinite families of almost self-complementary regular graphs, almost self-complementary vertex-transitive graphs, and non-cyclically almost self-complementary circulant graphs.  相似文献   

9.
For a positive integer n, does there exist a vertex-transitive graph Γ on n vertices which is not a Cayley graph, or, equivalently, a graph Γ on n vertices such that Aut Γ is transitive on vertices but none of its subgroups are regular on vertices? Previous work (by Alspach and Parsons, Frucht, Graver and Watkins, Marusic and Scapellato, and McKay and the second author) has produced answers to this question if n is prime, or divisible by the square of some prime, or if n is the product of two distinct primes. In this paper we consider the simplest unresolved case for even integers, namely for integers of the form n = 2pq, where 2 < q < p, and p and q are primes. We give a new construction of an infinite family of vertex-transitive graphs on 2pq vertices which are not Cayley graphs in the case where p ≡ 1 (mod q). Further, if p ? 1 (mod q), pq ≡ 3(mod 4), and if every vertex-transitive graph of order pq is a Cayley graph, then it is shown that, either 2pq = 66, or every vertex-transitive graph of order 2pq admitting a transitive imprimitive group of automorphisms is a Cayley graph.  相似文献   

10.
Shafei Du  Mingyao Xu 《代数通讯》2013,41(6):2685-2715
A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. This paper gives a classification of semisymmetric graphs of order 2pq where p and q are distinct primes. It is shown that there are 143 examples of such graphs, 131 of which are biprimitive.  相似文献   

11.
A regular and edge-transitive graph that is not vertex-transitive is said to be semisymmetric. Every semisymmetric graph is necessarily bipartite, with the two parts having equal size and the automorphism group acting transitively on each of these two parts. A semisymmetric graph is called biprimitive, if its automorphism group acts primitively on each part. In this article, a classification of biprimitive semisymmetric graphs arising from the action of the group PSL(2, p), p ≡ ±1 (mod 8) a prime, acting on cosets of S4 is given, resulting in several new infinite families of biprimitive semisymmetric graphs. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 217–228, 1999  相似文献   

12.
A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215–232) that a regular edge-transitive graph of order 2p or 2p 2 is necessarily vertex-transitive. In this paper, an extension of his result in the case of cubic graphs is given. It is proved that, every cubic edge-transitive graph of order 8p is symmetric, and then all such graphs are classified.  相似文献   

13.
An antimagic labeling of a graph withq edges is a bijection from the set of edges to the set of positive integers{1,2,...,q}such that all vertex weights are pairwise distinct,where the vertex weight of a vertex is the sum of the labels of all edges incident with that vertex.A graph is antimagic if it has an antimagic labeling.In this paper,we provide antimagic labelings for a family of generalized pyramid graphs.  相似文献   

14.
We construct a new infinite family of factorizations of complete bipartite graphs by factors all of whose components are copies of a (fixed) complete bipartite graph Kp,q. There are simple necessary conditions for such factorizations to exist. The family constructed here demonstrates sufficiency in many new cases. In particular, the conditions are always sufficient when q=p+1.  相似文献   

15.
Many large graphs can be constructed from existing smaller graphs by using graph operations, for example, the Cartesian product and the lexicographic product. Many properties of such large graphs are closely related to those of the corresponding smaller ones. In this short note, we give some properties of the lexicographic products of vertex-transitive and of edge-transitive graphs. In particular, we show that the lexicographic product of Cayley graphs is a Cayley graph.  相似文献   

16.
In this paper, seven families of vertex-intransitive locally (G,2)-arc transitive graphs are constructed, where Sz(q)?G?Aut(Sz(q)), q=22k+1 for some kN. It is then shown that for any graph Γ in one of these families, Sz(q)?Aut(Γ)?Aut(Sz(q)) and that the only locally 2-arc transitive graphs admitting an almost simple group of Suzuki type whose vertices all have valency at least three are (i) graphs in these seven families, (ii) (vertex transitive) 2-arc transitive graphs admitting an almost simple group of Suzuki type, or (iii) double covers of the graphs in (ii). Since the graphs in (ii) have been classified by Fang and Praeger (1999) [6], this completes the classification of locally 2-arc transitive graphs admitting a Suzuki simple group  相似文献   

17.
In this paper, we study a conjecture of Andries E. Brouwer from 1996 regarding the minimum number of vertices of a strongly regular graph whose removal disconnects the graph into non-singleton components.We show that strongly regular graphs constructed from copolar spaces and from the more general spaces called Δ-spaces are counterexamples to Brouwer?s Conjecture. Using J.I. Hall?s characterization of finite reduced copolar spaces, we find that the triangular graphs T(m), the symplectic graphs Sp(2r,q) over the field Fq (for any q prime power), and the strongly regular graphs constructed from the hyperbolic quadrics O+(2r,2) and from the elliptic quadrics O(2r,2) over the field F2, respectively, are counterexamples to Brouwer?s Conjecture. For each of these graphs, we determine precisely the minimum number of vertices whose removal disconnects the graph into non-singleton components. While we are not aware of an analogue of Hall?s characterization theorem for Δ-spaces, we show that complements of the point graphs of certain finite generalized quadrangles are point graphs of Δ-spaces and thus, yield other counterexamples to Brouwer?s Conjecture.We prove that Brouwer?s Conjecture is true for many families of strongly regular graphs including the conference graphs, the generalized quadrangles GQ(q,q) graphs, the lattice graphs, the Latin square graphs, the strongly regular graphs with smallest eigenvalue −2 (except the triangular graphs) and the primitive strongly regular graphs with at most 30 vertices except for few cases.We leave as an open problem determining the best general lower bound for the minimum size of a disconnecting set of vertices of a strongly regular graph, whose removal disconnects the graph into non-singleton components.  相似文献   

18.
Integral circulant graphs   总被引:2,自引:0,他引:2  
In this note we characterize integral graphs among circulant graphs. It is conjectured that there are exactly 2τ(n)-1 non-isomorphic integral circulant graphs on n vertices, where τ(n) is the number of divisors of n.  相似文献   

19.
Let p?1 and q?0 be integers. A family of sets F is (p,q)-intersecting when every subfamily FF formed by p or less members has total intersection of cardinality at least q. A family of sets F is (p,q)-Helly when every (p,q)-intersecting subfamily FF has total intersection of cardinality at least q. A graph G is a (p,q)-clique-Helly graph when its family of (maximal) cliques is (p,q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p=2,q=1. In this work we present a characterization for (p,q)-clique-Helly graphs. For fixed p,q, this characterization leads to a polynomial-time recognition algorithm. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard.  相似文献   

20.
Small k-regular graphs of girth g where g=6,8,12 are obtained as subgraphs of minimal cages. More precisely, we obtain (k,6)-graphs on 2(kq−1) vertices, (k,8)-graphs on 2k(q2−1) vertices and (k,12)-graphs on 2kq2(q2−1), where q is a prime power and k is a positive integer such that qk≥3. Some of these graphs have the smallest number of vertices known so far among the regular graphs with girth g=6,8,12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号