首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

2.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

3.
The 1H, 13C, 31P, and 195Pt NMR spectra of [Pt0(PPh3)2(eta-ABC(1) = C(2)XY)] compounds (ABC(1)= C(2)XY (1) A = B = X = Y = H; (3) A = B = X = H, Y = CN; (4) A = H, B = p-NO2-Ph, X = COOCH3, Y = CN; (5) A = H, B = Ph, X = COOCH3, Y = CN; (6) A = H, B = Ph, X = Y = CN; (7) A = H, B = OEt, X = Y = CN), where X and Y are electronacceptor substituents, and the 1H spectrum of [Pt0(PPh3)2(eta2-C60)] (2) are reported together with extended analyses and assignments, based also on the ring current effect of the olefin phenyl in (4-6). Deviations from first order in the 13C spectra allowed the determination of the relative signs of the coupling constants J(P(1), C) and J(P(2), C) of the alkene and of the triphenylphosphine carbons. Best fit simulation of the phosphine C ipso spectrum provided also the 13C isotopic shift on phosphorus for (1). These compounds are characterised by strong differences between the two platinum-phosphorus coupling constants in the case of asymmetric olefins (3-7). The chemical shifts of alkene C(1) and C(2) indicate notable polarisation of the olefin after complexation, while the 1J(Pt, C(1)) and 1J(Pt, C(2)) values are in agreement with a stronger interaction of Pt with C(1) than with C(2). These findings together with the trend of 195Pt chemical shifts confirm the important role played by back-donation in the bonding of platinum(0)-olefin compounds.  相似文献   

4.
The mononuclear pentafluorophenyl platinum complex containing the chelated diphenylphosphinous acid/diphenylphosphinite system [Pt(C(6)F(5)){(PPh(2)O)(2)H}(PPh(2)OH)] 1 has been prepared and characterised. 1 and the related alkynyl complex [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)OH)] 2 form infinite one-dimensional chains in the solid state based on intermolecular O-H[dot dot dot]O hydrogen bonding interactions. Deprotonation reactions of [PtL{(PPh(2)O)(2)H}(PPh(2)OH)] (L = C(6)F(5), C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh 3) with [Tl(acac)] yields tetranuclear Pt(2)Tl(2) complexes [PtL{(PPh(2)O)(2)H}(PPh(2)O)Tl](2) (L = C(6)F(5) 4, C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh ). The structure of the tert-butylalkynyl derivative , established by X-ray diffraction, shows two anionic discrete units [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)O)](-) joined by two Tl(i) centres via Tl-O and Pt-Tl bonds. Despite the existence of Pt-Tl interactions, they do not show luminescence.  相似文献   

5.
A nitrosylruthenium alkynyl complex of TpRuCl(C[triple bond]CPh)(NO)(1a) was reacted with PPh3 in the presence of HBF4.Et2O at room temperature to give a beta-phosphonio-alkenyl complex (E)-[TpRuCl{CH=C(PPh3)Ph}(NO)]BF4(2.BF4). On the other hand, for gamma-hydroxyalkynyl complexes TpRuCl{C[triple bond]CC(R)2OH}(NO)(R = Me (1b), Ph (1c), H (1d)), similar treatments with PPh3 were found to give gamma-phosphonio-alkynyl [TpRuCl{C[triple bond]CC(Me)2PPh3}(NO)]BF4(3.BF4),alpha-phosphonio-allenyl [TpRuCl{C(PPh3)=C=CPh2}(NO)]BF4(4.BF4), and a novel product of gamma-hydroxy-beta-phosphonio-alkenyl (E)-[TpRuCl{CH=C(PPh3)CH2OH}(NO)]BF4(5.BF4), respectively. Dominant factors for the selectivity in affording 3-5 were associated with the steric congestion and electronic properties at the gamma-carbons, along with those around the metal fragment. From the bis(alkynyl) complex TpRu(C[triple bond]CPh)2(NO)6, a bis(beta-phosphonio-alkenyl)(E,E)-[TpRu{CH=C(PPh3)Ph}2(NO)](BF4)2{7.(BF4)2} was produced at room temperature. However, similar reactions at 0 degrees C gave an alkynyl beta-phosphonio-alkenyl complex (E)-[TpRu(C[triple bondCPh){CH=C(PPh3)Ph}(NO)]BF4(8.BF4) as a sole product, of which additional hydration in the presence of HBF4.Et2O afforded a [small beta]-phosphonio-alkenyl ketonyl (E)-[TpRu{CH2C(O)Ph}{CH=C(PPh3)Ph}(NO)]BF(.9BF4). Five complexes, 2-5 and 7 were crystallographically characterized.  相似文献   

6.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

7.
Hydride abstraction from C(5)Me(5)(CO)(2)Re(eta(2)-PhC triple bond CCH(2)Ph) (1) gave a 3:1 mixture of eta(3)-propargyl complex [C(5)Me(5)(CO)(2)Re(eta(3)-PhCH-C triple bond CPh)][BF(4)] (5) and eta(2)-1-metalla(methylene)cyclopropene complex [C(5)Me(5)(CO)(2)Re(eta(2)-PhC-C=CHPh)][BF(4)] (6). Observation of the eta(2)-isomer requires 1,3-diaryl substitution and is favored by electron-donating substituents on the C(3)-aryl ring. Interconversion of eta(3)-propargyl and eta(2)-1-metalla(methylene)cyclopropene complexes is very rapid and results in coalescence of Cp (1)H NMR resonances at about -50 degrees C. Protonation of the alkynyl carbene complex C(5)Me(5)(CO)(2)Re=C(Ph)C triple bond CPh (22) gave a third isomer, the eta(3)-benzyl complex [C(5)Me(5)(CO)(2)Re[eta(3)(alpha,1,2)-endo,syn-C(6)H(5)CH(C triple bond CC(6)H(5))]][BF(4)] (23) along with small amounts of the isomeric complexes 5 and 6. While 5 and 6 are in rapid equilibrium, there is no equilibration of the eta(3)-benzyl isomer 23 with 5 and 6.  相似文献   

8.
Structurally similar but charge-differentiated platinum complexes have been prepared using the bidentate phosphine ligands [Ph(2)B(CH(2)PPh(2))(2)], ([Ph(2)BP(2)], [1]), Ph(2)Si(CH(2)PPh(2))(2), (Ph(2)SiP(2), 2), and H(2)C(CH(2)PPh(2))(2), (dppp, 3). The relative electronic impact of each ligand with respect to a coordinated metal center's electron-richness has been examined using comparative molybdenum and platinum model carbonyl and alkyl complexes. Complexes supported by anionic [1] are shown to be more electron-rich than those supported by 2 and 3. A study of the temperature and THF dependence of the rate of THF self-exchange between neutral, formally zwitterionic [Ph(2)BP(2)]Pt(Me)(THF) (13) and its cationic relative [(Ph(2)SiP(2))Pt(Me)(THF)][B(C(6)F(5))(4)] (14) demonstrates that different exchange mechanisms are operative for the two systems. Whereas cationic 14 displays THF-dependent, associative THF exchange in benzene, the mechanism of THF exchange for neutral 13 appears to be a THF independent, ligand-assisted process involving an anchimeric, eta(3)-binding mode of the [Ph(2)BP(2)] ligand. The methyl solvento species 13, 14, and [(dppp)Pt(Me)(THF)][B(C(6)F(5))(4)] (15), each undergo a C-H bond activation reaction with benzene that generates their corresponding phenyl solvento complexes [Ph(2)BP(2)]Pt(Ph)(THF) (16), [(Ph(2)SiP(2))Pt(Ph)(THF)][B(C(6)F(5))(4)] (17), and [(dppp)Pt(Ph)(THF)][B(C(6)F(5))(4)] (18). Examination of the kinetics of each C-H bond activation process shows that neutral 13 reacts faster than both of the cations 14 and 15. The magnitude of the primary kinetic isotope effect measured for the neutral versus the cationic systems also differs markedly (k(C(6)H(6))/k(C(6)D(6)): 13 = 1.26; 14 = 6.52; 15 approximately 6). THF inhibits the rate of the thermolysis reaction in all three cases. Extended thermolysis of 17 and 18 results in an aryl coupling process that produces the dicationic, biphenyl-bridged platinum dimers [[(Ph(2)SiP(2))Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (19) and [[(dppp)Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (20). Extended thermolysis of neutral [Ph(2)BP(2)]Pt(Ph)(THF) (16) results primarily in a disproportionation into the complex molecular salt [[Ph(2)BP(2)]PtPh(2)](-)[[Ph(2)BP(2)]Pt(THF)(2)](+). The bulky phosphine adducts [Ph(2)BP(2)]Pt(Me)[P(C(6)F(5))(3)] (25) and [(Ph(2)SiP(2))Pt(Me)[P(C(6)F(5))(3)]][B(C(6)F(5))(4)] (29) also undergo thermolysis in benzene to produce their respective phenyl complexes, but at a much slower rate than for 13-15. Inspection of the methane byproducts from thermolysis of 13, 14, 15, 25, and 29 in benzene-d(6) shows only CH(4) and CH(3)D. Whereas CH(3)D is the dominant byproduct for 14, 15, 25, and 29, CH(4) is the dominant byproduct for 13. Solution NMR data obtained for 13, its (13)C-labeled derivative [Ph(2)BP(2)]Pt((13)CH(3))(THF) (13-(13)()CH(3)()), and its deuterium-labeled derivative [Ph(2)B(CH(2)P(C(6)D(5))(2))(2)]Pt(Me)(THF) (13-d(20)()), establish that reversible [Ph(2)BP(2)]-metalation processes are operative in benzene solution. Comparison of the rate of first-order decay of 13 versus the decay of d(20)-labeled 13-d(20)() in benzene-d(6) affords k(13)()/k(13-d20)() approximately 3. The NMR data obtained for 13, 13-(13)()CH(3)(), and 13-d(20)() suggest that ligand metalation processes involve both the diphenylborate and the arylphosphine positions of the [Ph(2)BP(2)] auxiliary. The former type leads to a moderately stable and spectroscopically detectable platinum(IV) intermediate. All of these data provide a mechanistic outline of the benzene solution chemistries for the zwitterionic and the cationic systems that highlights their key similarities and differences.  相似文献   

9.
The formation of Pt(eta(5)-C(5)Me(5))(CO){C(O)NR(2)} (R=Me, Et) complexes was established by spectroscopic analysis. The infrared spectra of these complexes showed a sharp absorption due to the presence of coordinated carbonyl group in the region 2017-2013cm(-1). The N,N-dialkylcarbamoyl ligands showed a characteristic CO stretching absorption in the range 1609-1616cm(-1). The proton NMR spectra of these complexes revealed the expected singlet arising from five equivalent methyl groups on the cyclopentadienyl ring with satellites due to coupling to (195)Pt. The N-methyl and N-ethyl protons exhibited very broad resonances due to restricted rotation about the N-C bond at room temperature. On cooling to -30 degrees C, the N,N-dimethyl protons for complex Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} showed two sharp singlets at delta 2.86 and 3.09ppm as expected for the static structure. For the N,N-diethyl derivative, Pt(eta(5)-C(5)Me(5))(CO){C(O)NEt(2)}, the methyl protons exhibited only a single triplet at delta 1.06ppm at -10 degrees C due to coupling with the methylene protons. This single resonance arises through accidental overlap as the methylene protons of the ethyl groups are inequivalent at this temperature and each exhibited a quartet at delta 3.33 and 3.70ppm due to coupling with the methyl protons. The singlet resonances for the methyl and ring carbons of the eta(5)-C(5)Me(5) group found in (13)C{(1)H} NMR spectra are illustrative of the chemical equivalence of all the carbon atoms caused by free rotation of the ring in these complexes. The signals attributable to the carbonyl and carbamoyl carbon atom resonances are found downfield as two singlets each with a large coupling constant to platinum. The platinum coupling constants of the downfield resonances could not be identified for Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} due to presence of impurities.  相似文献   

10.
Solid-state 93Nb and 13C NMR experiments, in combination with theoretical calculations of NMR tensors, and single-crystal and powder X-ray diffraction experiments, are applied for the comprehensive characterization of structure and dynamics in a series of organometallic niobium complexes. Half-sandwich niobium metallocenes of the forms Cp'Nb(I)(CO)4 and CpNb(V)Cl4 are investigated, where Cp = C5H5- and Cp' = C5H4R- with R = COMe, CO2Me, CO2Et, and COCH2Ph. Anisotropic quadrupolar and chemical shielding (CS) parameters are extracted from 93Nb MAS and static NMR spectra for seven different complexes. It is demonstrated that 93Nb NMR parameters are sensitive to changes in temperature and Cp' ring substitution in the Cp'Nb(I)(CO)4 complexes. There are dramatic differences in the 93Nb quadrupolar coupling constants (C(Q)) between the Nb(I) and Nb(V) complexes, with C(Q) between 1.0 and 12.0 MHz for Cp'Nb(CO)4 and C(Q) = 54.5 MHz for CpNbCl4. The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequence is applied to rapidly acquire, in a piecewise fashion, a high signal-to-noise ultra-wide-line 93Nb NMR spectrum of CpNbCl4, which has a breadth of ca. 400 kHz. Solid-state 93Nb and 13C NMR spectra and powder XRD data are used to identify a new metallocene adduct coordinated at the axial position of the metal site by a THF molecule: CpNb(V)Cl4.THF. 13C MAS and CP/MAS NMR experiments are used to assess the purity of samples, as well as for measuring carbon CS tensors and the rare instance of one-bond 93Nb, 13C J-coupling, 1J(93Nb,13C). Theoretically calculated CS and electric field gradient (EFG) tensors are utilized to determine relationships between tensor orientations, the principal components, and molecular structures.  相似文献   

11.
Treatment of HgCl(2) with 2-LiC(6)H(4)PPh(2) gives [Hg(2-C(6)H(4)PPh(2))(2)] (1), whose phosphorus atoms take up oxygen, sulfur, and borane to give the compounds [Hg[2-C(6)H(4)P(X)Ph(2)](2)] [ X = O (3), S (4), and BH(3) (5)], respectively. Compound 1 functions as a bidentate ligand of wide, variable bite angle that can span either cis or trans coordination sites in a planar complex. Representative complexes include [HgX(2) x 1] [X = Cl (6a), Br (6b)], cis-[PtX(2) x 1] [X = Cl (cis-7), Me (9), Ph (10)], and trans-[MX(2) x 1] [X = Cl, M = Pt (trans-7), Pd (8), Ni (11); X = NCS, M = Ni (13)] in which the central metal ions are in either tetrahedral (6a,b) or planar (7-11, 13) coordination. The trans disposition of 1 in complexes trans-7, 8, and 11 imposes close metal-mercury contacts [2.8339(7), 2.8797(8), and 2.756(8) A, respectively] that are suggestive of a donor-acceptor interaction, M --> Hg. Prolonged heating of 1 with [PtCl(2)(cod)] gives the binuclear cyclometalated complex [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)HgCl] (14) from which the salt [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)Hg]PF(6) (15) is derived by treatment with AgPF(6). In 14 and 15, the mu-C(6)H(4)PPh(2) groups adopt a head-to-tail arrangement, and the Pt-Hg separation in 14, 3.1335(5) A, is in the range expected for a weak metallophilic interaction. A similar arrangement of bridging groups is found in [Cl((n)Bu(3)P)Pd(mu-C(6)H(4)PPh(2))(2)HgCl] (16), which is formed by heating 1 with [PdCl(2)(P(n)()Bu(3))(2)]. Reaction of 1 with [Pd(dba)(2)] [dba = dibenzylideneacetone] at room temperature gives [Pd(1)(2)] (19) which, in air, forms a trigonal planar palladium(0) complex 20 containing bidentate 1 and the monodentate phosphine-phosphine oxide ligand [Hg(2-C(6)H(4)PPh(2))[2-C(6)H(4)P(O)Ph(2)]]. On heating, 19 eliminates Pd and Hg, and the C-C coupled product 2-Ph(2)PC(6)H(4)C(6)H(4)PPh(2)-2 (18) is formed by reductive elimination. In contrast, 1 reacts with platinum(0) complexes to give a bis(aryl)platinum(II) species formulated as [Pt(eta(1)-C-2-C(6)H(4)PPh(2))(eta(2)-2-C(6)H(4)PPh(2))(eta(1)-P-1)]. Crystal data are as follows. Compound 3: monoclinic, P2(1)/n, with a = 11.331(3) A, b = 9.381(2) A, c = 14.516 A, beta = 98.30(2) degrees, and Z = 2. Compound 6b x 2CH(2)Cl(2): triclinic, P macro 1, with a = 12.720(3) A, b = 13.154(3) A, c = 12.724(2) A, alpha = 92.01(2) degrees, beta = 109.19(2) degrees, gamma = 90.82(2) degrees, and Z = 2. Compound trans-7 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.805(3) A, b = 8.532(4) A, c = 23.076(2) A, and Z = 4. Compound 11 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.455(3) A, b = 8.496(5) A, c = 22.858(3) A, and Z = 4. Compound 14: monoclinic, P2(1)/c, with a = 13.150(3) A, b = 12.912(6) A, c = 26.724(2) A, beta = 94.09(1) degrees, and Z = 4. Compound 20 x C(6)H(5)CH(3).0.5CH(2)Cl(2): triclinic, P macro 1, with a = 13.199(1) A, b = 15.273(2) A, c = 17.850(1) A, alpha = 93.830(7), beta = 93.664(6), gamma = 104.378(7) degrees, and Z = 2.  相似文献   

12.
The study of the reaction between the ethylene [Pt(eta-H2C = CH2)(PPh3)2] or alkyne [Pt(eta2-HC [triple bond] CR)(PPh3)2] (R = SiMe3 1, Bu(t) 2) complexes with [cis-Pt(C6F5)2(thf)2] (thf = tetrahydrofuran) has enabled us to observe the existence of competitive processes between the activation of a P-C(Ph) bond on the PPh3 ligand, to give the binuclear derivative [cis-(C6F5)2Pt(mu-Ph)(mu-PPh2)Pt(PPh3)] 3, and the activation of a C-H bond of the unsaturated group, to give the corresponding (mu-hydride)(mu-vinyl) [cis, cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-CH = CH2)Pt(C6F5)2] 4 or (mu-hydride)(mu-alkynyl) [cis,cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-C [triple bond]CR)Pt(C6F5)2] (R = SiMe3 5, Bu(t) 6) compounds, respectively. The monitoring of these reactions by NMR spectroscopy has allowed us to detect several intermediates, and to propose a mechanism for the C-H bond activation. In addition, the structures of the (muo-hydride)(mu-alkynyl) complex 5 and the unprecedented (mu-hydride)(mu-vinyl) derivative 4 have been obtained by X-ray crystallographic analyses.  相似文献   

13.
The reaction of Cp*RhCl2(PPh3) 1 with 1-alkyne and H2O in the presence of KPF6 afforded the alkenyl ketone complex [Cp*Rh(PPh3)(CPh=CHCOCH2R)](PF6) [R = p-tolyl (3a), R = Ph (3b)], whereas Cp*IrCl2(PPh3) 2 or [(eta 6-C6Me6)RuCl2(PPh3) gave the corresponding [Cp*IrCl(CO)(PPh3)](PF6) 5a and [(eta 6-C6Me6)RuCl(CO)(PPh3)](PF6).  相似文献   

14.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

15.
[PPh4]2[M(C2N2S2)2](M = Pt, Pd) and [Pt(C2N2S2)(PR3)2](PR3= PMe2Ph, PPh3) and [Pt(C2N2S2)(PP)](PP = dppe, dppm, dppf) were all obtained by the reaction of the appropriate metal halide containing complex with potassium cyanodithioimidocarbonate. The dimeric cyanodithioimidocarbonate complexes [[Pt(C2N2S2)(PR3)]2](PR3 = PMe2Ph), [M[(C2N2S2)(eta5-C5Me5)]2](M = Rh, Ir)and [[Ru(C2N2S2)(eta6-p-MeC6H4iPr)]2] have been synthesised from the appropriate transition metal dimer starting material. The cyanodithioimidocarbonate ligand is S,S and bidentate in the monomeric complexes with the terminal CN group being approximately coplanar with the CS2 group and trigonal at nitrogen thus reducing the planar symmetry of the ligand. In the dimeric compound one of the sulfur atoms bridges two metal atoms with the core exhibiting a cubane-like geometry.  相似文献   

16.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

17.
The solution structures of the novel heterobimetallic complexes [Ir(dppm)(Ph(2)PCH(2)PPh(2)PPPP){Pt(PPh(3))2}]OTf and [Rh(dppm)(Ph(2)PCH(2)PPh(2)PPPP){Pt(PPh(3))(2)}]OTf derived from the reaction of Rh and Ir--P(5) precursors with [Pt(C2H4)(PPh3)2] have been unambiguously assigned on the basis of 1H NMR and 31P{1H} NMR data. The results are in agreement with the regio-selective insertion of the {Pt(PPh3)2} moiety resulting in a new pentaphosphorus topology which agrees with the formal formation of a unique phosphonium(+)-tetraphosphabutadienide(2-) ligand.  相似文献   

18.
The oxidative addition of cyclic ditelluride 1-oxa-5,6-ditelluraspirooctane, Te(2)C(5)H(8)O, to bis(triphenylphosphine)(norbornene)platinum(0), [Pt(PPh(3))(2)(eta(2)-nb)], and to [1,8-bis(diphenylphosphino)naphthalene](norbornene)platinum(0), [Pt(dppn)(eta(2)-nb)], lead to the formation of dinuclear and mononuclear tellurolato platinum(ii) complexes, respectively, as a consequence of Te-Te bond cleavage; no Te-C bond cleavage was observed.  相似文献   

19.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

20.
The reaction of [(cod)RhCl]2 with Ph3P=C=PPh3 (1) gave the bidentate Rh(I) carbene complex, (cod)Rh[eta2-C{P(C6H4)Ph2}{PPh3}] (2), in which one of the Ph groups in 1 underwent orthometalation to form the chelate. Displacement of cod by 2 equiv of PMe3 transformed 2, via a second orthometalation event, into the Rh(III) C,C,C pincer carbene complex, HRh(PMe3)2[eta3-C{P(C6H4)Ph2}2] (3). The reaction of [Me2Pt(SMe2)]2 with 1 led directly to the analogous C,C,C pincer carbene complex of Pt(II), (Me2S)Pt[eta3-C{P(C6H4)Ph2}2] (4). DFT calculations on a model form of 3 suggest a net single sigma-bonding interaction between Rh and an sp2-hybridized carbene center, with a HOMO that is predominantly carbene pz in character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号