首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E-4-(2-(4- tert - butylphenyl) ethen-1- yl)benzoate, E-1, photoisomerizes to the Z-1 isomer and vice versa in the free state and in the binary complexes 2·E-1, 2·Z-1, 3·E-1 and 3·Z-1 where 2 is the urea-linked cyclodextrin N-(6 A -deoxy--cyclodextrin-6 A - yl)-N-(6 A -deoxy--cyclodextrin-6 A - yl)urea and 3 is N,N- bis(6 A -deoxy--cyclodextrin-6 A - yl)urea. In 2·E-1and 3·E-1 the stilbene occupies both cyclodextrin (CD) components of 2 and 3, whereas in 2·Z-1 and 3·Z-1 it only occupies one CD component while the other CD component is unoccupied. 4- tert - Butylphenolate, 4, and its carboxylate, 5, and sulfonate, 6, analogues form the ternary complex 2·Z-1·4 and its analogues and also 3·Z-1·4 and its analogues. These photoisomerize to 2·E-1and 3·E-1 and either free 4, 57 or 6 and thereby function as molecular devices.  相似文献   

2.
The [Et4N][M(CO)5SCOPh] complexes (1a, M = Mo; 2a, M = W) have been prepared at ambient temperatures by reacting the photogenerated M(CO)5 THF intermediate with [Et4N][SCOPh] in THF. Kinetic studies of the reactions of the anions [M(CO)5SCOPh] with the tri(iso-propyl)phosphite (L) ligand under pseudo-first-order conditions indicate that these reactions are first-order in substrate and are independent of the P(OPr-i)3 concentration. It is thus envisaged that these CO substitutions proceed via a mechanism which involves initial cis-M—CO bond-breaking, followed by fast attack of the incoming nucleophile on the resulting intermediate to give [cis-M(CO)4{P(O-Pri)3}SCOPh]. This facile displacement of cis-CO indicates the labilizing nature of the thiobenzoate ligand, most probably by virtue of distal oxygen atom participation. Activation parameters for the reactions are: [M(CO)5SCOPh] + L cis-[M(CO)4(L)SCOPh] + CO M = Mo, H = 24.6(2) kcal mol–1, S = 8.2(6) eu; M = W, H = 28.4(2) kcal mol–1, S = 11.3(5) eu. Kinetic data and the mechanism of these ligand-substitutions are discussed.  相似文献   

3.
Summary Complex reactions between MoV.VI ando-hydroxybenzylamine-N,N,O-triacetic acid (HBATA) have been investigated in the 1–3 and 2.8–6.5 pH range by potentiometric titration at 30° C in 0.5 mol dm–3 NaCl. The equilibrium data were analyzed with the SCOGS2 and MINIQUAD programs, taking into account side reactions of MoV.VI and HBATA with hydrogen ion. The favorable reaction model comprises two complexes, (1,1,1)+ and (1,2,2), with formation constants log 111 = 14.85 ± 0.11 and log 122 = 28.51 ± 0.08 for the MoV-HBATA system and the two complexes (1,1,2)3– and (1,1,3)2– with formation constants log 112 = 17.36 ± 0.01 and log 113 = 20.60 ± 0.01 for the MoVI-HBATA system. The numbers in brackets refer to the chemical stoichiometric coefficients of molybdenum, HBATA and hydrogen ion in the complexes. The structure and coordinating behaviours of MoV and MoVI complexes are discussed. The equilibria studied for the polymerization of MoV indicates that dimeric, trimeric and tetrameric species are present at pH 1–3.  相似文献   

4.
The reaction between CrVI and 12-tungstocobaltate(II) was carried out in 2.0 mol dm–3 HCl and followed a simple second order rate law. The reaction was catalysed by hydrogen ion due to the formation of active H2CrO4 and was inhibited by chloride ion as, in its presence, conversion of the active species into inactive chlorochromate occurs. Chromium(V) and chromium(IV) were generated in situ by the use of CrVI—VIV or CrVI—2-ethyl-2-hydroxybutyric acid and CrVI—i-PrOH reactions respectively, and the oxidation of 12-tungstocobaltate(II) by these atypical oxidation states, was also studied. The rate constants for the oxidation of 12-tungstocobaltate(II) by CrVI, CrV and CrIV were found to be in the ratio 1:1.2:5.2 respectively. The ionic strength did not affect the reaction, while decrease in the solvent polarity increased the rate of the reaction. The activation parameters were also determined and the values H , G and S were found to be 52.4 ± 6 kJ mol–1, 100.8 ± 7 kJ mol–1, –151.7 ± 10 J K–1 mol–1 respectively, supporting the mechanism proposed.  相似文献   

5.
Summary The kinetics of the oxidative addition of Hg(CN)2 to [Rh(-diketone)(P(OPh)3)2] in acetone medium were studied. Various -diketones, with different electronic and steric properties, were used to determine their effect on the rate of the oxidative addition reactions. The structure of the product of the oxidative addition was proposed with the aid of i.r.,1H–,13C– and31P n.m.r. spectra. A product in whichcis addition took place with the CN and one P(OPh)3 group in the axial positions of an octahedron were proposed. A second order rate law, electronic and steric factors influencing the reaction rate as well as large negative values for the entropy of activation, supported an associative type of mechanism, which probably proceedsvia a cyclic three-centred transition state.  相似文献   

6.
Summary The aquation ofcis-[(en)2Co(CO2H)2]+ tocis-[(en)2Co(OH2)(CO2H)]2+ is catalysed by Cu2+ and the rate equation, –d[complex]t/dt=(kCu[Cu2+]+kH [H+]) [complex)T is valid at [Cu2+]T=0.01–0.1, I=0.5 and [HClO4]=0.005 mol dm–3. The rate measurements are reported at 30, 35, 40 and 45°C and the rate and activation parameters for the Cu2+ and H+-catalysed paths are: kH(35°C)=(2.44±0.09)×10–2 dm3 mol–1 s–1, H=83±13 kJ mol–1, S=–8±42 JK–1 mol–1, k Cu (35°C)=(3.30±0.09)×10–3 dm3 mol–1 s–1, H=73.2±6.1 kJ mol–1, S=–55±20 JK–1 mol–1. The formate-bridged innersphere binuclear complex,cis-[(en)2Co{(O2CH)2Cu}]3+ may be involved as the catalytically active intermediate in the copper(II)-catalysed path, just as the corresponding H+-bridged species presumed to be present in the acidcatalysed path.  相似文献   

7.
Summary Cyanide ion reacts with [Fe(Par)2]2–,i.e. Par=4-(2-pyridylazo)resorcinol to form a 113 mixed cyanocomplex. The reaction has been studied spectrophotometrically at 720 nm max, pH=11.5±0.02, and I=0.1 M (NaClO4) at 25±0.1°C. The order with respect to cyanide varies from one to two at high and low cyanide concentrations respectively. The rate constants for respective reactions are k1=(6.1±0.3)×10–2 M–1 s–1, k2=(12.6±1.0) M–2 s–1. The reverse reaction does not occur at a measurable rate even in presence of a large excess of Par. These observations suggest that [Fe(Par)2]2– forms a mixed [FePar(CN)3]3– complex in presence of an excess of cyanide ion. The activation parameters for the reaction have been calculated and used to support a three step mechanism consistent with these results. The effect of ionic strength tends further support to the mechanism.  相似文献   

8.
Summary In the solid state l-cis-[M(en)2Cl2]Cl [M=cobalt(III) or chromium(III)] undergoes thermal racemisation smoothly at 158 °C without anycis-trans interconversion. The values of krac, H and S are 6 × 10–6s–1, 218 kJM–1 and 156.1 JK–1M–1 for the cobalt(III) complex and 3.5 × 10–5s–1, 229.7 kJM–1 and 197.9 JK–1M–1 for the chromium(III) complex, respectively. The results are only in accord with a rhombic twist mechanism of the type originally proposed by Ray and Dutt for [M(AA)3] complexes.  相似文献   

9.
Summary Equilibrium betweenDCPHD,DC-4-Cl-PHD, andDC-4-Me-PHD and protons, transition, and lanthanide ions have been investigated at 30 °C by means of potentiometric titration in 75% (v/v) methanol-water mixture containing 0.10M KNO3 as a constant ionic medium. Thermodynamic parameters (G, H and S) referring to the formation of species HL ,L ––,ML +n–2 andML 2 +n–4 (L –– denotes the ligand anion) have been determined in solutions. The solvent effects on the thermodynamic parameters of the complex formation are discussed in terms of differences in the donor ability of methanol and water solvents. The plots of thermodynamic parameters versus ionic potential (Z 2/r) of the lanthanide elements is not linear as expected from ionic theory. The obtained curve can be resolved in an initial group (the lighter lanthanides), an intermediate group (Sm-Dy), and a final group (the heavier ones, Tb-Lu). This behavior was explained in terms of differences in the dehydration of lighter lanthanide(III) from that of heavier ones.
Thermodynamik der Komplexierung von Lanthaniden und einigen Übergangsmetall-Ionen mit 5,5-Dimethylcyclohexyl-2-(2-hydroxyphenyl)-hydrazono-1,3-dion (DCPHD) und seinen Derivaten
Zusammenfassung Die Gleichgewichte zwischenDCPHD,DC-4-Cl-PHD undDC-4-Me-PHD mit Protonen, Übergangsmetall- und Lanthaniden-Ionen wurden bei 30 °C mittels potentiometrischer Titration in 75% (v/v) Methanol-Wasser mit einem Gehalt an 0.10M KNO3 als konstantem ionischem Medium untersucht. Die thermodynamischen Parameter G, H und S zur Bildung der Spezies HL ,L ––,ML +n–2 undML 2 +n–4 (L –– steht für das Ligandenanion) wurden in Lösung bestimmt. Die Lösungsmitteleffekte auf diese Komplexbildungsparameter werden auf Basis der Differenz im Donorvermögen von Methanol und Wasser als Solventien diskutiert. Die Diagramme der thermodynamischen Parameter gegen die ionischen Potentiale (Z 2/r) der Lanthaniden sind, wie nach der Ionentheorie zu erwarten, nicht linear. Die erhaltene Kurve läßt eine Anfangsgruppe (die leichteren Lanthaniden), eine mittlere Gruppe (Sm-Dy) und eine Endgruppe (die schwereren Lanthaniden. Tb-Lu) erkennen. Dieses Verhalten kann aus dem Unterschied im Dehydratationsverhalten erklärt werden.
  相似文献   

10.
The kinetics and mechanism of chromium(VI) oxidation of L-methionine in acidic medium have been studied spectrophotometrically. The reaction proceeds via the formation of a transient intermediate (max = 410–420 nm) which decomposes by a proton catalyzed pathway. The rate law is:
The activation enthalpy and activation entropy for the reaction have been calculated to be H * = 43.85 kJ mol–1, S * = –286.87 JK–1 mol–1. Also values of k 1, k –1 and k 3 were determined: 27.2 × 10–3 M–1 S–1, 1.97 × 10–3 S–1, 7.2 × 10–3 s–1, respectively. The results are compared with those of related studies for reduction of chromate by amino acids.  相似文献   

11.
An X-ray diffraction investigation has performed for copper(II) bis-hexafluoroacetylacetonate (Bruker AXS P4 automatic diffractometer, MoK radiation, t = –25°C). Crystal data for C10H2CuF12O4: a = 5.530(1) Å, b = 6.038(1) Å, c = 11.266(2) Å, = 95.948(3)°, = 101.743(3)°, = 92.298(3)°, space group; P1, V = 365.6(1) Å3, Z = 1, d calc = 2.169 g/cm3. The square-planar environment of the copper atom (Cu-Oav 1.912 Å, O-Cu-Oav 93°) is completed to bipyramidal by two fluorine atoms of the neighboring molecules, Cu...F 2.71 Å and 2.75 Å.Original Russian Text Copyright © 2004 by S. A. Gromilov, I. A. Baidina, P. A. Stabnikov, and G. V. RomanenkoTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 502–507, May–June 2004.  相似文献   

12.
1-Substituted 1-chloro-3-organylthiopropa-1,2-dienes 1a–f belonging to previously unknown type of allenic compounds were synthesized by chlorination of 1-organylthioalk-1-ynes 3a–f with N-chlorosuccinimide. The reactions of compounds 1a–f with ButOK in hexane at –20 °C are accompanied by -elimination of HCl to give new alk-1-ynyl(organylthio)carbenes 2a–f, which add to olefins to form the corresponding 1-(alk-1-ynyl)-1-organylthiocyclopropanes 5 in yields of up to 60%. The electrophilic properties of carbenes 2 were confirmed experimentally.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2440–2447, November, 2004.  相似文献   

13.
The kinetics of acid-catalyzed hydrolysis of the [Co(en)(L)2(O2CO)]+ ion (L = imidazole, 1-methylimidazole, 2-methylimidazole) follows the rate law –d[complex]/dt = {k 1 K[H+]/(1 + K[H+])}[complex] (15–30 or 25–40 °C, [H+] = 0.1–1.0 M and I = 1.0 M (NaClO4)). The reaction course consists of a rapid pre-equilibrium protonation, followed by a rate determining chelate ring opening process and subsequent fast release of the one-end bound carbonato ligand. Kinetic parameters, k 1 and K, at 25 °C are 5.5 × 10–2 s–1, 0.44 M–1 (ImH), 5.1 × 10–2 s–1, 0.54 M–1 (1-Meim) and 3.8 × 10–3 s–1, 0.74 M–1 (2-MeimH) respectively, and activation parameters for k 1 are H1 = 43.7 ± 8.9 kJ mol–1, S1 = –123 ± 30 J mol–1 deg–1 (ImH), H1 = 43.1 ± 0.3 kJ mol–1, S1 = –125 ± 1 J mol–1 deg–1 (1-Meim) and H1 = 64.2 ± 4.3 kJ mol–1, S1 = –77 ± 14 J mol–1 deg–1 (2-MeimH). The results are compared with those for similar cobalt(III) complexes.  相似文献   

14.
A detailed investigation of the oxidation of L-ascorbic acid (H2A) by the title complex has been carried out using conventional spectrophotometry at 510 nm, over the ranges: 0.010 [ascorbate] T 0.045 mol dm–3, 3.62 pH 5.34, and 12.0 30.0 °C, 0.50 I 1.00 mol dm–3, and at ionic strength 0.60 mol dm–3 (NaClO4). The main reaction products are the bis(pyridine-2,6-dicarboxylate)cobaltate(II) ion and l-dehydroascorbic acid. The reaction rate is dependent on pH and the total ascorbate concentration in a complex manner, i.e., k obs = (k 1 K 1)[ascorbate] T /(K 1 + [H+]). The second order rate constant, k 1 [rate constant for the reaction of the cobalt(III) complex and HA] at 25.0 °C is 2.31 ± 0.13 mol–1 dm3 s–1. H = 30 ± 4 kJ mol–1 and S = –138 ± 13 J mol–1 K–1. K 1, the dissociation constant for H2A, was determined as 1.58 × 10–4 mol dm–3 at an ionic strength of 0.60 mol dm–3, while the self exchange rate constant, k 11 for the title complex, was determined as 1.28 × 10–5 dm3 mol–1 s–1. An outer-sphere electron transfer mechanism has been proposed.  相似文献   

15.
A new macrocyclic ligand, 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) (refered to as dipon) exhibits high thermodynamic and kinetic selectivity for Cu2+ compared to other transition metal ions. The initial-rate method (=310nm, pH=3.75, cL4.6×10–3molL–1) was chosen as an optimal experimental approach in order to achieve maximum sensitivity of determination. The dynamic range of the method is (5–200)×10–6molL–1, and the detection limit is 2.5×10–6molL–1. A standard addition procedure was applied to the kinetic determination of Cu2+ to eliminate the effect of interfering ions (e.g. Zn2+, Ca2+, Mg2+, Cd2+, Pb2+, Mn2+, Co2+, Ni2+, HCO3, Cl, SO42–, etc.). The method was tested on artificial and real samples (alloys, pure and spiked mineral water) and gave satisfactory results which are in agreement with the values for some certified materials. The advantage of the proposed method is rapidity, simplicity and robustness in the presence of other metal ions.  相似文献   

16.
A comprehensive study of copper(II) bis-ketoiminate including tensimetric analysis of sublimation and structure solution has been carried out. The temperature dependence of saturated vapor pressure over Cu(ki)2 crystals derived by the flow method is expressed by the equation lnP(atm)} = 25.31-13750/T, H subl = -114.2 ± 1.3 kJ· mole-1, Ssubl =210.2 ± 3.0> J· mole-1 · K-1. Crystal data for CuO2N2C10H16: a=15.143(3), b=16.681(8), c=13.795(32) , space group Ccca, Z=12, d calc = 1.47 g/cm3, R=0.029. The structure is molecular and consists of crystallographically independent Cu(ki)2 complexes of two types, one with a cis structure and the other with a cistrans disordering. The copper atom has a plane square environment of two oxygen and two nitrogen atoms. In the cis isomer, Cu–O 1.938 and Cu–N 1.895 ; in the disordered complex, all four Cu–O(N) distances are 1.901 .  相似文献   

17.
Summary A series of mixed-ligand complexes of group VIII metals, M(DIAFO)2(NCS)2 and M(DIAFH)2X2 (M = FeII, CoII, NiII, X = NCS, Cl) with the 3,3-bridged derivative of 2,2-bipyridyl (bipy) (1) were prepared, where DIAFO (2) and DIAFH (3) are 4,5-diazafluoren-9-one and 4,5-diazafluoren-9-hydrazone, respectively. These complexes were investigated by i.r., u.v.-vis-near i.r. spectroscopy and by variable-temperature magnetic susceptibility measurements. The electronic spectra show that the two ligands exert a field strength far removed from the FeII cross-over value. All the complexes are paramagnetic, following the Curie-Weiss law in the 77–300 K range. A typical crystal structure of Co(DIAFO)2(NCS)2 for these compounds was determined with orthorhombic, space group Pcan, a = 10.377(5) Å, b = 13.289(6) Å, c= 16.629(7) Å, V = 2293(2) Å3, D c = 1.563 g cm–3, F(000) = 1091.74, Z = 4, R = 0.043, R = 0.047. Steric effects are thought to be operative in both ligands studied, but are weaker than those of the typical bidentate diimine ligand bipy.Author to whom all correspondence should be directed.  相似文献   

18.
Isosaccharinate (ISA), a degradation product of cellulose codisposed in low-level nuclear wastes, is expected to be one of the dominant complexing ligands for radionuclides, especially tetravalent actinides. This paper presents a comprehensive thermodynamic model for isosaccharinate reactions with Ca(II) and Np(IV). The model is valid for a wide range of pH values (2–14), ISA concentrations (ranging up to 0.1 m), and ionic strengths (ranging up to 6.54 m), and is based on (1) NMR investigations of HISA(aq) (-D-isosaccharinic acid) and ISL(aq) [dehydration product of HISA(aq)], and the solubility of Ca(ISA)2(c) as a function of pH and concentrations of Ca and ISA; (2) NpO2(am) solubility in a wide range of pH values (2–14) and total ISA concentrations of 0.0016 and 0.008 m and at fixed pH values of approximately 5 and 12 with total ISA concentrations ranging from 0.0001 to 0.1 m; and (3) solvent extraction of Np-ISA solutions, containing fixed NaClO4 concentrations ranging from 0.103 to 6.54 m and at fixed pC H+ values ranging from 1.5 to 1.9, with dibenzoylmethane. Pitzer's ion-interaction approach was used to interpret the data. The different aqueous species required to explain these data included HISA(aq), ISL(aq), Ca(ISA)+, Np(OH)3(ISA)(aq), Np(OH)3(ISA)2 , Np(OH)4(ISA), and Np(OH)4(ISA)2 2–. The values of equilibrium constants for reactions involving these species and determined from these data provided close agreements between the observed and predicted concentrations in all of the systems investigated in this study and those reported previously.  相似文献   

19.
Summary It has been established that 1-(2-phenyl-2-hydroxyiminoethyl)-1-quinolinium chloride, 1-(2-phenyl-2-hydroxyiminoethyl)-1-isoqui-nolinium chloride, 1-(2-phenyl-2-hydroxyiminoethyl)-1-(4-methyl)-quinolinium chloride and 1-(2-phenyl-2-hydroxyiminoethyl)-1-(6-methyl)quinolinium chloride react with palladium(II) chloride in the pH range 3.3–7.1 and form yellow water-soluble 11 complexes with maximum absorbance at 413 nm. The conditional stability constants of the complexes at the optimum pH of 6.5 are all about 104.7, and the molar absorptivities are in the range 2.2–2.6×103 l·l mole–1·cm–1 at pH 6.5 and 413 nm. Beer's law is obeyed up to 3–4×10–4 M oxime concentration, depending on the oxime determined.  相似文献   

20.
Summary The reactions of [Fe(bipyz)3]2+ (bipyz = 2,2-bipyrazine) and [Fe(box)3]2+ [box = 2,2-bis-(5,6-dihydro-4-H-1,3-oxazine] with H2O and HO in aqueous solution have been followed. The [Fe(bipyz)3]2+ ion is attacked at the ligand with both nucleophiles and the ligand is cleaved. A similar reaction between HO and [Fe(box)3]2+ is observed. Detailed kinetics for all reactions are reported.phen 1,10-phenanthroline - bipy 2,2-bipyridyl - bipym 2,2-bipyrimidine Part XXV: R. D. Gillard, W. S. Walters and P. A. Williams,J. Chem. Soc. Dalton Trans., in press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号