首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We introduce the concept of effective electron drift mobility for multiwalled carbon nanotubes. This effective quantity is calculated under a quantum-box approach to conceive quantum transport in a given multiwalled carbon nanotube. In addition, effective motion time is determined.  相似文献   

3.
Yi W  Lu L  Hu H  Pan ZW  Xie SS 《Physical review letters》2003,91(7):076801
Tunneling spectroscopy measurements of single tunnel junctions formed between multiwalled carbon nanotubes (MWNTs) and a normal metal are reported. Intrinsic Coulomb interactions in the MWNTs give rise to a strong zero-bias suppression of a tunneling density of states that can be fitted numerically to the environmental quantum-fluctuation theory. An asymmetric conductance anomaly near zero bias is found at low temperatures and interpreted as Fano resonance in the strong tunneling regime.  相似文献   

4.
Vertically aligned carbon nanofibers (CNF) and multiwalled carbon nanotubes (MWCN) have been synthesized from camphor by catalytic thermal CVD method on Co and Co/Fe thin films (for CNF) and on silicon substrates using a mixture of camphor and ferrocene (for MWCN). CNF and MWCN are studied by field emission scanning electron microscopy, high-resolution transmission electron microscopy, visible Raman spectroscopy, X-ray diffraction in order to get insight into the microstructure and morphology of these materials. Field electron emission study indicates turn-on field of about 2.56, 3.0 and 6.5 V/μm for MWCN, Co/CNF and Co/Fe/CNF films, respectively. The best performance of MWCN in field electron emission among the materials studied can be due to the highest aspect ratio, good graphitization and good density.  相似文献   

5.
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid state of correlated metals is presented. The ESR measurables such as the signal intensity and the linewidth are calculated in the framework of Luttinger liquid theory with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant temperature dependent homogeneous line broadening which is related to the spin-symmetry breaking and the electron-electron interaction. The result crosses over smoothly to the ESR of itinerant electrons in the noninteracting limit. These findings explain the absence of the long-sought ESR signal of itinerant electrons in single-wall carbon nanotubes when considering realistic experimental conditions.  相似文献   

6.
Effect of temperature and aspect ratio on the field emission properties of vertically aligned carbon nanofiber and multiwalled carbon nanotube thin films were studied in detail. Carbon nanofibers and multiwalled carbon nanotube have been synthesized on Si substrates via direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films have been studied by a scanning electron microscope, transmission electron microscope and an atomic force microscope. It is found that the threshold field and the emission current density are dependent on the ambient temperature as well as on the aspect ratio of the carbon nanostructure. The threshold field for carbon nanofibers was found to decrease from 5.1 to 2.6 V/μm when the temperature was raised from 300 to 650 K, whereas for MWCNTs it was found to decrease from 4.0 to 1.4 V/μm. This dependence was due to the change in work function of the nanofibers and nanotubes with temperature. The field enhancement factor, current density and the dependence of the effective work function with temperature and with aspect ratio were calculated and we have tried to explain the emission mechanism.  相似文献   

7.
Summary Bovine-serum albumin samples were spin labelled with the nitroxide radical 2, 2, 6, 6-tetramethylpiperidineoxyl-4-maleimide and then were subjected to varying degrees of iodination. The electron spin resonance spectra produced by the spin labels indicate that the iodination produces structural changes in the regions of the macromolecules where the spin labels are bonded for degrees of iodination exceeding 4 equivalents/mol. No evidence for such structural changes is present in the spectra recorded for lower degrees of iodination.
Riassunto Campioni di albumina di siero bovino sono stati marcati secondo lo spin con il, radicale dell’amido di azoto 2, 2, 6, 6-tetrameltipiperidineoxil-4-maleimide e quindi sottoposti a diversi gradi di iodizzazione. Gli spettri di risonanza di spin dell’elettrone prodotti dai tipi di spin indicano che la iodizzazione produce cambiamenti strutturali nelle regioni delle macromolecole in cui i gruppi di spin sono legati per gradi di iodizzazione che superano 4 equivalenti/mole. Non si presenta alcuna prova di cambiamento strutturale negli spettri registrati per gradi piú bassi di iodizzazione.

Резюме Производится нанесение спиновой метки на образцы альбумина бычьей сыворотки с помощью радикала окиси азота 2, 2, 6, 6-тетраметилпиперидинеоксил-4-малемида. Затем образцы подвергаются различной степени иодизации. Спектры электронного спинового резонанса, образованные спиновыми метками. указывают, что иодизация осуществляет структурные изменения в областях микромолекул, где спиноые метки связаны для степеней иодизации выше 4 эквивалент/моль. Не обнаружено указанных структурных изменений в спектрах, зарегистрированных для меньших степеней иодизации.
  相似文献   

8.
Nanocomposites of carbon nanotubes and titanium dioxide (TiO2) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO2. In this work, we show evidence of the attachment of nanostructured TiO2 to multiwalled carbon nanotubes (MWNTs) by Raman spectroscopy. The nanostructured TiO2 was characterized by both full‐width at half‐maximum (FWHM) and the Raman shift of the TiO2 band at ca 144 cm−1, whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO2 shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO2. To complement the nanocomposite characterization, scanning electronic microscopy and X‐ray diffraction were performed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We report on the characterization of torsional oscillators which use multiwalled carbon nanotubes as the spring elements. Through atomic-force-microscope force-distance measurements we are able to apply torsional strains to the nanotubes and measure their torsional spring constants, and estimate their effective shear moduli. The data show that the nanotubes are stiffened by repeated flexing. We speculate that changes in the intershell mechanical coupling are responsible for the stiffening.  相似文献   

10.
Current saturation and electrical breakdown in multiwalled carbon nanotubes   总被引:3,自引:0,他引:3  
We investigate the limits of high energy transport in multiwalled carbon nanotubes (MWNTs). In contrast to metal wires, MWNTs do not fail in the continuous, accelerating manner typical of electromigration. Instead, they fail via a series of sharp, equally sized current steps. We assign these steps to the sequential destruction of individual nanotube shells, consistent with the MWNT's concentric-shell geometry. Furthermore, the initiation of this failure is very sensitive to air exposure. In air failure is initiated by oxidation at a particular power, whereas in vacuum MWNTs can withstand much higher power densities and reach their full current carrying capacities.  相似文献   

11.
We report that a twisting deformation mode emerges with the rippling in bent multiwalled carbon nanotubes via atomistic simulations. This mode arises from the curvature-induced lattice mismatch, and is energetically favorable. For the nanotubes with larger radii, twisting may enhance the local strain relaxation. Under the thermal fluctuation, the nucleation of defects involves bond breaking and reconstruction due to strain localization. The defective inner tubes undergo the cyclic torsion, resulting in unstable necking and even failure. Prior to fracture, a monatomic chain is formed under the combination of bending and twisting.  相似文献   

12.
We describe interlayer force measurements during prolonged, cyclic telescoping motion of a multiwalled carbon nanotube. The force acting between the core and the outer casing is modulated by the presence of stable defects and generally exhibits ultralow friction, below the measurement limit of 1.4 x 10(-15) N/atom and total dissipation per cycle lower than 0.4 meV/atom. Defects intentionally introduced in the form of dangling bonds lead to temporary mechanical dissipation, but the innate ability of nanotubes to self heal rapidly optimizes the atomic structure and restores smooth motion.  相似文献   

13.
The measured drop of the effective bending stiffness of multiwalled carbon nanotubes (MWCNTs) with increasing diameter is investigated by a generalized local quasicontinuum method. The previous hypothesis that this reduction is due to a rippling mode is confirmed by the calculations. The observed ripples result from a complex three-dimensional deformation similar to the Yoshimura buckling pattern. It is found that thick MWCNTs exhibit a well-defined nonlinear moment-curvature relation, even for small deformations, governed by the interplay of strain energy relaxation and intertube interactions. Rippling deformations are also predicted for MWCNTs subject to torsion, resulting in an effective torsional modulus much smaller than that predicted by linear elasticity.  相似文献   

14.
Electron spin resonance (ESR) and optical absorption spectra of K atoms embedded in Ar matrices have been measured simultaneously. ESR and optical spectra could be correlated comparing the effects of annealing and light induced site modifications. Electron spin relaxation times were estimated by saturation measurements. A large variety of ESR spectra was found which could be arranged into four groups according to their A and g factor matrix shifts. Two of these groups could be correlated with optical absorptions namely with the so-called red and blue triplet bands. The other two groups belong to K-(H2O)n complexes. Part of the absorption disappeared irreversibly upon annealing at about 12 K. There is considerable experimental evidence that this annealing process indicates the transition from an amorphous to a microcrystalline structure at about 12 K.  相似文献   

15.
We report on the low temperature electron spin resonance (ESR) properties of ultra-small (0.45?nm) double walled carbon nanotubes (DWCNTs) embedded in zeolite nanochannels. An isotropic ESR signal is observed at g(c)?=?2.002?77 with the spin density (S?=?1/2)?~?10(19)?g(-1), which is suggested to originate from the carbon related point defects in the DWCNTs. Measurements of the ESR line width and signal intensity as a function of temperature indicate that the spins are of a localized nature as opposed to the conduction type electrons observed in large diameter CNTs. The results are consistent with the suggestion that electrons are trapped at interstitial defects. The observed linear frequency dependence of the ESR line width of embedded DWCNTs points to 'strain' as the prime source of broadening. By contrast, the study of free standing DWCNTs shows the presence of a distinctly superlinear frequency dependence of the signal width at low temperatures. The possible origin of the frequency dependence is discussed.  相似文献   

16.
Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC. The electrochemical performance of the nanocomposites was evaluated by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2/MWCNTs nanocomposites show a higher capacity than the SnO2/VC nanocomposites. Concretely, the SnO2/MWCNTs electrodes exhibit a specific capacitance of 133.33 F g−1, whereas SnO2/VC electrodes exhibit a specific capacitance of 112.14 F g−1 measured at 0.5 mA cm−2 in 1 M Na2SO4.  相似文献   

17.
18.
We report on the spin dynamics of 13C isotope enriched inner walls in double-wall carbon nanotubes using 13C nuclear magnetic resonance. Contrary to expectations, we find that our data set implies that the spin-lattice relaxation time (T1) has the same temperature (T) and magnetic field (H) dependence for most of the inner-wall nanotubes detected by NMR. In the high-temperature regime (T approximately > or = 150 K), we find that the T and H dependence of 1/T1T is consistent with a 1D metallic chain. For T approximately < or = 150 K we find a significant increase in 1/T1T with decreasing T, followed by a sharp drop below approximately = 20 K. The data clearly indicate the formation of a gap in the spin excitation spectrum, where the gap value 2delta approximately = 40 K (congruent to 3.7 meV) is H independent.  相似文献   

19.
We study the collective vibrational breathing modes in the Raman spectrum of multiwalled carbon nanotubes (MCNTs). First, a bond polarization theory and the spectral moment's method (SMM) are used to calculate the non-resonant Raman frequencies of the breathing-like modes (BLMs) and the tangential-like ones (TLMs). Second, the Raman active modes of MCNTs are computed for different diameters and numbers of layers. The obtained low frequency modes in MCNTs can be identified to each single-walled carbon nanotubes. These modes that originate from the radial breathing ones of the individual walls are strongly coupled through the concentric tube–tube van der Waals interaction. The calculated BLMs in the low-frequency region are compared with the experimental Raman data obtained from other studies. Finally, special attention is given to the comparison with Raman data on MCNTs composed of six layers.  相似文献   

20.
《Physics letters. A》1986,118(2):93-97
The conversion of muonium into a diamagnetic muon state in KCl and NaCl was directly observed by detecting a time-delayed appearance of diamagnetic muon states with muon spin resonance. The conversion rate, determined from the time-differential resonance signals, shows a thermal activation characteristic in temperature variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号