首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The functional higher oxidation states of heme peroxidases have been proposed to be stabilized by the significant imidazolate character of the proximal His. This is induced by a "push-pull" combination effect produced by the proximal Asp that abstracts ("pulls") the axial His ring N(delta)H, along with the distal protonated His that contributes ("pushes") a strong hydrogen bond to the distal ligand. The molecular and electronic structure of the distal His mutant of cyanide-inhibited horseradish peroxidase, H42A-HRPCN, has been investigated by NMR. This complex is a valid model for the active site hydrogen-bonding network of HRP compound II. The (1)H and (15)N NMR spectral parameters characterize the relative roles of the distal His42 and proximal Asp247 in imparting imidazolate character to the axial His. 1D/2D spectra reveal a heme pocket molecular structure that is highly conserved in the mutant, except for residues in the immediate proximity of the mutation. This conserved structure, together with the observed dipolar shifts of numerous active site residue protons, allowed a quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor, both of which are only minimally perturbed relative to wild-type HRPCN. The quantitated dipolar shifts allowed the factoring of the hyperfine shifts to reveal that the significant changes in hyperfine shifts for the axial His and ligated (15)N-cyanide result primarily from changes in contact shifts that reflect an approximately one-third reduction in the axial His imidazolate character upon abolishing the distal hydrogen-bond to the ligated cyanide. Significant changes in side chain orientation were found for the distal Arg38, whose terminus reorients to partially fill the void left by the substituted His42 side chain. It is concluded that 1D/2D NMR can quantitate both molecular and electronic structural changes in cyanide-inhibited heme peroxidase and that, while both residues contribute, the proximal Asp247 is more important than the distal His42 in imparting imidazole character to the axial His 170.  相似文献   

2.
The distal hydrogen bond (H‐bond) in dioxygen‐binding proteins is crucial for the discrimination of O2 with respect to CO or NO. We report the preparation and characterization of a series of ZnII porphyrins, with one of three meso‐phenyl rings bearing both an alkyl‐tethered proximal imidazole ligand and a heterocyclic distal H‐bond donor connected by a rigid acetylene spacer. Previously, we had validated the corresponding CoII complexes as synthetic model systems for dioxygen‐binding heme proteins and demonstrated the structural requirements for proper distal H‐bonding to CoII‐bound dioxygen. Here, we systematically vary the H‐bond donor ability of the distal heterocycles, as predicted based on pKa values. The H‐bond in the dioxygen adducts of the CoII porphyrins was directly measured by Q‐band Davies‐ENDOR spectroscopy. It was shown that the strength of the hyperfine coupling between the dioxygen radical and the distal H‐atom increases with enhanced acidity of the H‐bond donor.  相似文献   

3.
The substrate and active site residues of the low-spin hydroxide complex of the protohemin complex of Neisseria meningitidis heme oxygenase (NmHO) have been assigned by saturation transfer between the hydroxide and previously characterized aquo complex. The available dipolar shifts allowed the quantitation of both the orientation and anisotropy of the paramagnetic susceptibility tensor. The resulting positive sign, and reduced magnitude of the axial anisotropy relative to the cyanide complex, dictate that the orbital ground state is the conventional "d(pi)" (d(2)(xy)(d(xz), d(yz))(3)); and not the unusual "d(xy)" (d(2)(xz)d(2)(yz)d(xy)) orbital ground state reported for the hydroxide complex of the homologous heme oxygenase (HO) from Pseudomonas aeruginosa (Caignan, G.; Deshmukh, R.; Zeng, Y.; Wilks, A.; Bunce, R. A.; Rivera, M. J. Am. Chem. Soc. 2003, 125, 11842-11852) and proposed as a signature of the HO distal cavity. The conservation of slow labile proton exchange with solvent from pH 7.0 to 10.8 confirms the extraordinary dynamic stability of NmHO complexes. Comparison of the diamagnetic contribution to the labile proton chemical shifts in the aquo and hydroxide complexes reveals strongly conserved bond strengths in the distal H-bond network, with the exception of the distal His53 N(epsilon)(1)H. The iron-ligated water is linked to His53 primarily by a pair of nonligated, ordered water molecules that transmit the conversion of the ligated H-bond donor (H(2)O) to a H-bond acceptor (OH(-)), thereby increasing the H-bond donor strength of the His53 side chain.  相似文献   

4.
QM/MM calculations are used to elucidate the Poulos-Kraut (Poulos, T. L.; Kraut, J. J. Biol. Chem. 1980, 255, 8199-8205) mechanism of O-O bond activation and Compound I (Cpd I) formation in HRP, in conditions corresponding to neutral to basic pH. Attempts to generate Compound I directly from the Fe(H2O2) complex by migrating the proton from the proximal oxygen to the distal one (1,2- proton shift) result in high barriers. The lowest energy mechanism was found to involve initial deprotonation of ferric hydrogen peroxide complex (involving spin crossover from the quartet to the doublet state) by His42 to form ferric-hydroperoxide (Cpd 0). Subsequently, the distal OH group of Cpd 0 is pulled by Arg38 and reprotonated by His42(H+) to form Cpd I and a water molecule that bridges the two residues. The structures of the intermediate and the transition state reveal the manner by which the Arg-His residues promote cooperatively the electronic reorganization that is required to attend the heterolytic O-O cleavage.  相似文献   

5.
Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (approximately 90%) in solution has protohemin oriented as in crystals, with the remaining approximately 10% exhibiting the hemin orientation rotated 180 degrees about the alpha-, gamma-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes are controlled by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal an indistinguishable pattern and magnitudes of the contact shifts or pi spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds.  相似文献   

6.
Iron(III)-hydroperoxo, [Por(CysS)Fe(III)-OOH](-), a key species in the catalytic cycle of cytochrome P450, was recently identified by EPR/ENDOR spectroscopies (Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. E.; Sligar, S. G.; Hoffman, B. M. J. Am. Chem. Soc. 2001, 123, 1403-1415). It constitutes the last station of the preparative steps of the enzyme before oxidation of an organic compound and is implicated as the second oxidant capable of olefin epoxidation (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555-3560), in addition to the penultimate active species, Compound I (Groves, J. T.; Han, Y.-Z. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; pp 3-48). In response, we present a density functional study of a model species and its ethylene epoxidation pathways. The study characterizes a variety of properties of iron(III)-hydroperoxo, such as the O-O bonding, the Fe-S bonding, Fe-O and Fe-S stretching frequencies, its electron attachment, and ionization energies. Wherever possible these properties are compared with those of Compound I. The proton affinities for protonation on the proximal and distal oxygen atoms of iron(III)-hydroperoxo, and the effect of the thiolate ligand thereof, are determined. In accordance with previous results (Harris, D. L.; Loew, G. H. J. Am. Chem. Soc. 1998, 120, 8941-8948), iron(III)-hydroperoxo is a strong base (as compared with water), and its distal protonation leads to a barrier-free formation of Compound I. The origins of this barrier-free process are discussed using a valence bond approach. It is shown that the presence of the thiolate is essential for this process, in line with the "push effect" deduced by experimentalists (Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. 1996, 96, 2841-2887). Finally, four epoxidation pathways of iron(III)-hydroxperoxo are located, in which the species transfers oxygen to ethylene either from the proximal or from the distal sites, in both concerted and stepwise manners. The barriers for the four mechanisms are 37-53 kcal/mol, in comparison with 14 kcal/mol for epoxidation by Compound I. It is therefore concluded that iron(III)-hydroperoxo, as such, cannot be a second oxidant, in line with its significant basicity and poor electron-accepting capability. Possible versions of a second oxidant are discussed.  相似文献   

7.
Pulse electron paramagnetic resonance and hyperfine sublevel correlation spectroscopy have been used to investigate nitrogen coordination of the active site of [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F in its oxidized "ready" state. The obtained (14)N hyperfine (A = [+1.32, +1.32, +2.07] MHz) and nuclear quadrupole (e(2)qQ/h = -1.9 MHz, eta = 0.37) coupling constants were assigned to the N(epsilon) of a highly conserved histidine (His88) by studying a hydrogenase preparation in which the histidines were (15)N labeled. The histidine is hydrogen-bonded via its N(epsilon)-H to the nickel-coordinating sulfur of a cysteine (Cys549) that carries an appreciable amount of spin density. Through the hydrogen bond a small fraction of the spin density ( approximately 1%) is delocalized onto the histidine ring giving rise to an isotropic (14)N hyperfine coupling constant of about 1.6 MHz. These conclusions are supported by density functional calculations. The measured (14)N quadrupole coupling constants are related to the polarization of the N(epsilon)-H bond, and the respective hydrogen bond can be classified as being weak.  相似文献   

8.
DFT computational studies on the A cluster of acetyl-coenzyme A synthase are presented and discussed. They aim at evaluating possible A cluster models to settle the ongoing controversy about the nature of the proximal metal site in the catalytically active form of the cluster, recently proposed to be either Ni or Cu. Two possible models for the NiFeC species are considered, [Fe4S4]2+-Ni+CO-Ni2+ and [Fe4S4]2+-Cu+CO-Ni+. While for the former the computed 57Fe, 61Ni, and 13C hyperfine coupling parameters agree reasonably well with corresponding experimental values, for the latter model this agreement is very poor because the actual charge distribution is [Fe4S4]+-Cu+CO-Ni2+. Together, our results provide compelling evidence that the catalytically active A cluster contains Ni rather than Cu at the proximal metal site. Computations on the Ared2 state proposed to be part of the catalytic cycle (Darnault, C.; Volbeda, A.; Kim, E. J.; Legrand, P.; Vernède, X.; Lindahl, P. A.; Fontecilla-Camps, J. C. Nat. Struct. Biol. 2003, 10, 271-279) yield [Fe4S4]+-Ni+-Ni2+, hinting toward a Ni+/Ni3+ redox couple being involved in the methylation reaction.  相似文献   

9.
Electron paramagnetic resonance (EPR) spectra of variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht c-552) and Pseudomonas aeruginosa cytochrome c(551) (Pa c-551) are analyzed to determine the effect of heme ruffling on ligand-field parameters. Mutations introduced at positions 13 and 22 in Ht c-552 were previously demonstrated to influence hydrogen bonding in the proximal heme pocket and to tune reduction potential (E(m)) over a range of 80 mV [Michel, L. V.; Ye, T.; Bowman, S. E. J.; Levin, B. D.; Hahn, M. A.; Russell, B. S.; Elliott, S. J.; Bren, K. L. Biochemistry 2007, 46, 11753-11760]. These mutations are shown here to also increase heme ruffling as E(m) decreases. The primary effect on electronic structure of increasing heme ruffling is found to be a decrease in the axial ligand-field term Δ/λ, which is proposed to arise from an increase in the energy of the d(xy) orbital. Mutations at position 7, previously demonstrated to influence heme ruffling in Pa c-551 and Ht c-552, are utilized to test this correlation between molecular and electronic structure. In conclusion, the structure of the proximal heme pocket of cytochromes c is shown to play a role in determining heme conformation and electronic structure.  相似文献   

10.
Molybdenum-dependent nitrogenase binds and reduces N2 at the [Fe7, Mo, S9, X, homocitrate] iron-molybdenum cofactor (FeMo-co). Kinetic and spectroscopic studies of nitrogenase variants indicate that a single Fe-S face is the most likely binding site. Recently, substantial progress has been made in determining the structures of nitrogenase intermediates formed during alkyne and N2 reduction through use of ENDOR spectroscopy. However, constraints derived from ENDOR studies of biomimetic complexes with known structure would powerfully contribute in turning experimentally derived ENDOR parameters into structures for species bound to FeMo-co during N2 reduction. The first report of a paramagnetic Fe-S compound that binds reduced forms of N2 involved Fe complexes stabilized by a bulky beta-diketiminate ligand (Vela, J.; Stoian, S.; Flaschenriem, C. J.; Münck, E.; Holland, P. L. J. Am. Chem. Soc. 2004, 126, 4522-4523). Treatment of a sulfidodiiron(II) complex with phenylhydrazine gave an isolable mixed-valence FeII-Fe(III) complex with a bridging phenylhydrazido (PhNNH2) ligand, and this species now has been characterized by ENDOR spectroscopy. Using both 15N, 2H labeled and unlabeled forms of the hydrazido ligand, the hyperfine and quadrupole parameters of the -N-NH2 moiety have been derived by a procedure that incorporates the (near-) mirror symmetry of the complex and involves a strategy which combines experiment with semiempirical and DFT computations. The results support the use of DFT computations in identifying nitrogenous species bound to FeMo-co of nitrogenase turnover intermediates and indicate that 14N quadrupole parameters from nitrogenase intermediates will provide a strong indication of the nature of the bound nitrogenous species. Comparison of the large 14N hyperfine couplings measured here with that of a hydrazine-derived species bound to FeMo-co of a trapped nitrogenase intermediate suggests that the ion(s) are not high spin and/or that the spin coupling coefficients of the coordinating cofactor iron ion(s) in the intermediate are exceptionally small.  相似文献   

11.
HbN and HbO are two truncated hemoglobins from Mycobacterium tuberculosis. Resonance Raman spectra of the deoxy derivatives of these two homodimeric hemoglobins indicate that there is no proximal strain imposed by intersubunit interactions on the proximal iron-histidine bond as that observed in the tetrameric human hemoglobin. In addition, with nanosecond laser flash photolysis, it was concluded that movement along the Fe-His bond following the dissociation of CO does not trigger a quaternary structural transition in these two hemoglobins.  相似文献   

12.
To address questions regarding the mechanism of serine protease catalysis, we have solved two X-ray crystal structures of alpha-lytic protease (alphaLP) that mimic aspects of the transition states: alphaLP at pH 5 (0.82 A resolution) and alphaLP bound to the peptidyl boronic acid inhibitor, MeOSuc-Ala-Ala-Pro-boroVal (0.90 A resolution). Based on these structures, there is no evidence of, or requirement for, histidine-flipping during the acylation step of the reaction. Rather, our data suggests that upon protonation of His57, Ser195 undergoes a conformational change that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102 hydrogen bond in the catalytic triad is a normal ionic hydrogen bond, and not a low-barrier hydrogen bond (LBHB) as previously hypothesized. We propose that the enzyme has evolved a network of relatively short hydrogen bonds that collectively stabilize the transition states. In particular, a short ionic hydrogen bond (SIHB) between His57 Nepsilon2 and the substrate's leaving group may promote forward progression of the TI1-to-acylenzyme reaction. We provide experimental evidence that refutes use of either a short donor-acceptor distance or a downfield 1H chemical shift as sole indicators of a LBHB.  相似文献   

13.
The solution 1H NMR spectrum of oxidized (met) mouse neuroglobin, metNgb, demonstrates that it is low-spin and hexacoordinate with strong spectral similarities to ferricytochrome b5. The axial ligands are identified as His(F8) and His(E7), with the latter exhibiting an unstrained Fe-His bond. The presence of two sets of resonances is shown to arise from equilibrium heme orientational isomers ( approximately 2:1). The ligation of cyanide is shown to be extraordinarily slow with a factor approximately 2 difference in rate for the two heme orientations. Not only is Ngb the first mamalian globin with equilibrium heme disorder, but the disorder also has additional functional consequences.  相似文献   

14.
Fujii H  Yoshida T 《Inorganic chemistry》2006,45(17):6816-6827
Studies of the 13C and 15N NMR paramagnetic shifts of the iron-bound cyanides in the ferric cyanide forms of various heme proteins containing the proximal histidine and related model complexes are reported. The paramagnetic shifts of the 13C and 15N NMR signals of the iron-bound cyanide are not significantly affected by the substitution of the porphyrin side chains. On the other hand, the paramagnetic shifts of both the 13C and 15N NMR signals decrease with an increase in the donor effect of the proximal ligand, and the 13C NMR signal is more sensitive to a modification of the donor effect of the proximal ligand than the 15N NMR signal. With the tilt of the iron-imidazole bond, the paramagnetic shift of the 13C NMR signal increases, whereas that of the 15N NMR signal decreases. The hydrogen-bonding interaction of the iron-bound cyanide with a solvent decreases the paramagnetic shift of both 13C and 15N NMR signals, and the effect is more pronounced for the 15N NMR signal. Data on the 13C and 15N NMR signals of iron-bound cyanide for various heme proteins are also reported and analyzed in detail. Substantial differences in the 13C and 15N NMR shifts for the heme proteins can be explained on the basis of the results for the model complexes and structures around the heme in the heme proteins. The findings herein show that the paramagnetic shift of the 13C NMR signal of the iron-bound cyanide is a good probe to estimate the donor effect of the proximal imidazole and that the ratio of 15N/13C NMR shifts allows the hydrogen-bonding interaction on the distal side to be estimated.  相似文献   

15.
Ab initio CCSD and CCSD(T) calculations with the 6-311+G(2d,2p) and the 6-311++G(3df,3pd) basis sets were carried out to characterize the vinyl cyanide (C(3)H(3)N) dissociation channels leading to hydrogen cyanide (HCN) and its isomer hydrogen isocyanide (HNC). Our computations predict three elimination channels giving rise to HCN and another four channels leading to HNC formation. The relative HCN/HNC branching ratios as a function of internal energy of vinyl cyanide were computed using RRKM theory and the kinetic Monte Carlo method. At low internal energies (120 kcal/mol), the total HCN/HNC ratio is about 14, but at 148 kcal/mol (193 nm) this ratio becomes 1.9, in contrast with the value 124 obtained in a previous ab initio/RRKM study at 193 nm (Derecskei-Kovacs, A.; North, S. W. J. Chem. Phys.1999, 110, 2862). Moreover, our theoretical results predict a ratio of rovibrationally excited acetylene over total acetylene of 3.3, in perfect agreement with very recent experimental measurements (Wilhelm, M. J.; Nikow, M.; Letendre, L.; Dai, H.-L. J. Chem. Phys.2009, 130, 044307).  相似文献   

16.
The solution (1)H 1D and 2D NMR spectra of the high-spin ferric, resting-state, substrate-bound complex of heme oxygenase, HO, from the pathological bacterium N. meningitidis have been investigated to assess the prospects for definitive assignment of hyperfine shifted and relaxed residue protons and the interpretation of those shifts in terms of the anisotropy and orientation of the paramagnetic susceptibility tensor, chi. Appropriately tailored 1D/2D NMR data, together with analyses of paramagnetic relaxation and a preliminary estimate of the magnetic anisotropy, reveal a chi that is axially anisotropic and oriented along the Fe-His vector. Together with T(-)(2) dependence of the shifts, Deltachi(ax) yields a zero-field splitting constant, D = 9.1 cm(-)(1), which is expected to serve as a very sensitive probe of H-bond interactions between the iron-ligated water and a series of distal ordered water molecules implicated in the mechanism of HO action. The side chains, Gln49 and His53, involved in the stabilization of catalytically relevant water molecules, were found to exhibit orientations rotated by 180 degrees about the beta-gamma bonds in solution relative to those in the crystal. The implication of these reorientations on the details of the distal H-bond network is discussed. The H-bond donor strengths of Gln 49 and His53 were found to respond appropriately to H-bond donor (water) versus H-bond acceptor (cyanide) iron ligands. Very slow NH exchange for the N-terminal portion of the distal helix suggest that an intrinsically "unstable" distal helix may be valid only for the C-terminal portion.  相似文献   

17.
Distal hydrogen bonding in natural dioxygen binding proteins is crucial for the discrimination between different potential ligands such as O2 or CO. In the present study, we probe the chemical requirements for proper distal hydrogen bonding in a series of synthetic model compounds for dioxygen‐binding heme proteins. The model compounds 1‐Co to 7‐Co bear different distal residues. The hydrogen bonding in their corresponding dioxygen adducts is directly measured by pulse EPR spectroscopy. The geometrical requirements for this interaction to take place were found to be narrow and very specific. Only two model complexes, 1‐Co and 7‐Co , form a hydrogen bond to bound dioxygen, which was characterized in terms of geometry and nature of the bond. The geometry and dipolar nature of this interaction in 1‐Co ‐O2 is more similar to the one in natural cobalt myoglobin (Co‐Mb), making 1‐Co the best model compound in the entire series.  相似文献   

18.
We report the results of a series of density functional theory (DFT) calculations of the M?ssbauer quadrupole splittings and isomer shifts in NO heme model compounds, together with the results of calculations of the M?ssbauer quadrupole splittings, isomer shifts, and electron paramagnetic resonance hyperfine coupling constants in a model Fe(II)(NO)(imidazole) complex as a function of Fe-NO bond length and Fe-N-O bond angle. The results of the M?ssbauer quadrupole splitting and isomer shift calculations on the NO heme model compounds show good accord between theory and experiment, with the largest errors being observed for structures having the largest crystallographic R(1) values. The results of the property surface calculations were then used to calculate Fe-NO bond length and Fe-N-O bond angle probability surfaces (Z-surfaces) for a nitrosyl hemoglobin, using, in addition, an energy filter. The results obtained yielded a most probable Fe-NO bond length (r) of 1.79 A and an Fe-N-O bond angle (beta) of 136 degrees -137 degrees. This bond length is somewhat longer than those observed in most model compounds but may be due, at least in part, to hydrogen bond formation with the distal His residue. Bond elongation was also observed in a geometry optimized Fe(II)(NO)(imidazole) complex hydrogen bonded to an imidazole residue, in which we find r = 1.76-1.78 A and beta = 137 degrees -138 degrees. The computed bond angles are close to the canonical approximately 140 degrees value found in most model systems. Highly bent Fe-N-O bond angles or very long Fe-NO bond lengths seem unlikely to occur in proteins, due to their high energies. We also investigated the molecular orbitals and spin densities in each of the six coordinate systems investigated and found the orbitals and spin densities to be generally similar those described previously for five coordinate systems. Taken together, these results show that M?ssbauer quadrupole splittings and isomer shifts, in addition to electron paramagnetic resonance hyperfine coupling constants, can now be calculated for nitrosyl heme systems with relatively good accuracy and that the results so obtained can be used to determine Fe-N-O geometries in metalloproteins. The Z-surface approach is thus applicable to both diamagnetic (CO) and paramagnetic (NO) heme proteins with in both cases the metal-ligand binding geometries found in the proteins being very close to those seen in model systems.  相似文献   

19.
The macrocyclic receptors 4-6 were synthesized via the anion-templated condensation of appropriately chosen dialdehyde and diamine building blocks. Whereas all three products could be obtained directly via the appropriate choice of reaction conditions, the larger [3+3] product, 6, which incorporates three of each precursor subunit, could also be obtained conveniently via an indirect procedure involving ring expansion of the smaller [2+2] macrocycle 4. As detailed earlier (Sessler, J. L.; Katayev, E. A.; Pantos, G. D.; Reshetova, M. D.; Khrustalev, V. N.; Lynch, V. M.; Ustynyuk, Y. A. Angew. Chem. 2005, 117, 7552-7556; Angew. Chem., Int. Ed. 2005, 44, 7386-7390), this ring expansion occurs under thermodynamic control in the presence of HSO4- and H2PO4- anions in acetonitrile solution and serves to effect the conversion of 4 to 6. An analysis of the X-ray crystal structure of complex 6H22+.HPO42- revealed a strong resemblance to the active site of the phosphate binding protein (PBP) with similar structural analogies being drawn between the active site of the sulfate binding protein (SBP) and the corresponding hydrogensulfate anion complex. In both cases, the anions are bound in a 1:1 fashion in the solid state through a complementary hydrogen bond network involving both the receptor 6 and the anions. UV-vis spectroscopic titrations provide support for the conclusion that macrocycle 6 binds the hydrogensulfate and dihydrogenphosphate anion (studied as the corresponding tetrabutylammonium salts) with high selectivity and affinity in acetonitrile (log Ka for the first binding interaction approaching 7), albeit with different receptor-to-anion binding stoichiometries (1:1 vs 1:3 for HSO4- and H2PO4-, respectively).  相似文献   

20.
Solution 1H NMR has been used to assign a major portion of the heme environment and the substrate-binding pocket of resting state horseradish peroxidase, HRP, despite the high-spin iron(III) paramagnetism, and a quantitative interpretive basis of the hyperfine shifts is established. The effective assignment protocol included 2D NMR over a wide range of temperatures to locate residues shifted by paramagnetism, relaxation analysis, and use of dipolar shifts predicted from the crystal structure by an axial paramagnetic susceptibility tensor normal to the heme. The most effective use of the dipolar shifts, however, is in the form of their temperature gradients, rather than by their direct estimation as the difference of observed and diamagnetic shifts. The extensive assignments allowed the quantitative determination of the axial magnetic anisotropy, Deltachi(ax) = -2.50 x 10(-8) m(3)/mol, oriented essentially normal to the heme. The value of Deltachi(ax) together with the confirmed T(-2) dependence allow an estimate of the zero-field splitting constant D = 15.3 cm(-1), which is consistent with pentacoordination of HRP. The solution structure was generally indistinguishable from that in the crystal (Gajhede, M.; Schuller, D. J.; Henriksen, A.; Smith, A. T.; Poulos, T. L. Nature Structural Biology 1997, 4, 1032-1038) except for Phe68 of the substrate-binding pocket, which was found turned into the pocket as found in the crystal only upon substrate binding (Henriksen, A.; Schuller, D. J.; Meno, K.; Welinder, K. G.; Smith, A. T.; Gajhede, M. Biochemistry 1998, 37, 8054-8060). The reorientation of several rings in the aromatic cluster adjacent to the proximal His170 is found to be slow on the NMR time scale, confirming a dense, closely packed, and dynamically stable proximal side up to 55 degrees C. Similar assignments on the H42A-HRP mutant reveal conserved orientations for the majority of residues, and only a very small decrease in Deltachi(ax) or D, which dictates that five-coordination is retained in the mutant. The two residues adjacent to residue 42, Ile53 and Leu138, reorient slightly in the mutant H42A protein. It is concluded that effective and very informative 1H NMR studies of the effect of either substrate binding or mutation can be carried out on resting state heme peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号