首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we generalize the classical dynamic lot-sizing problem by considering production capacity constraints as well as delivery and/or production time windows. Utilizing an untraditional decomposition principle, we develop a polynomial-time algorithm for computing an optimal solution for the problem under the assumption of non-speculative costs. The proposed solution methodology is based on a dynamic programming algorithm that runs in O(nT4) time, where n is the number of demands and T is the length of the planning horizon.  相似文献   

2.
This paper presents a stochastic optimization model and efficient decomposition algorithm for multi-site capacity planning under the uncertainty of the TFT-LCD industry. The objective of the stochastic capacity planning is to determine a robust capacity allocation and expansion policy hedged against demand uncertainties because the demand forecasts faced by TFT-LCD manufacturers are usually inaccurate and vary rapidly over time. A two-stage scenario-based stochastic mixed integer programming model that extends the deterministic multi-site capacity planning model proposed by Chen et al. (2010) [1] is developed to discuss the multi-site capacity planning problem in the face of uncertain demands. In addition a three-step methodology is proposed to generate discrete demand scenarios within the stochastic optimization model by approximating the stochastic continuous demand process fitted from the historical data. An expected shadow-price based decomposition, a novel algorithm for the stage decomposition approach, is developed to obtain a near-optimal solution efficiently through iterative procedures and parallel computing. Preliminary computational study shows that the proposed decomposition algorithm successfully addresses the large-scale stochastic capacity planning model in terms of solution quality and computation time. The proposed algorithm also outperforms the plain use of the CPLEX MIP solver as the problem size becomes larger and the number of demand scenarios increases.  相似文献   

3.
In this paper, the dynamic capacitated location-routing problem with fuzzy demands (DCLRP-FD) is considered. In the DCLRP-FD, facility location problem and vehicle routing problem are solved on a time horizon. Decisions concerning facility locations are permitted to be made only in the first time period of the planning horizon but, the routing decisions may be changed in each time period. Furthermore, the vehicles and depots have a predefined capacity to serve the customers with altering demands during the time horizon. It is assumed that the demands of customers are fuzzy variables. To model the DCLRP-FD, a fuzzy chance-constrained programming is designed based upon the fuzzy credibility theory. To solve this problem, a hybrid heuristic algorithm (HHA) with four phases including the stochastic simulation and a local search method are proposed. To achieve the best value of two parameters of the model, the dispatcher preference index (DPI) and the assignment preference index (API), and to analyze their influences on the final solution, numerical experiments are carried out. Moreover, the efficiency of the HHA is demonstrated via comparing with the lower bound of solutions and by using a standard benchmark set of test problems. The numerical examples show that the proposed algorithm is robust and could be used in real world problems.  相似文献   

4.
Planning horizon is a key issue in production planning. Different from previous approaches based on Markov Decision Processes, we study the planning horizon of capacity planning problems within the framework of stochastic programming. We first consider an infinite horizon stochastic capacity planning model involving a single resource, linear cost structure, and discrete distributions for general stochastic cost and demand data (non-Markovian and non-stationary). We give sufficient conditions for the existence of an optimal solution. Furthermore, we study the monotonicity property of the finite horizon approximation of the original problem. We show that, the optimal objective value and solution of the finite horizon approximation problem will converge to the optimal objective value and solution of the infinite horizon problem, when the time horizon goes to infinity. These convergence results, together with the integrality of decision variables, imply the existence of a planning horizon. We also develop a useful formula to calculate an upper bound on the planning horizon. Then by decomposition, we show the existence of a planning horizon for a class of very general stochastic capacity planning problems, which have complicated decision structure.  相似文献   

5.
6.
We address a multi-category workforce planning problem for functional areas located at different service centres, each having office-space and recruitment capacity constraints, and facing fluctuating and uncertain workforce demand. A deterministic model is initially developed to deal with workforce fluctuations based on an expected demand profile over the horizon. To hedge against the demand uncertainty, we also propose a two-stage stochastic program, in which the first stage makes personnel recruiting and allocation decisions, while the second stage reassigns workforce demand among all units. A Benders’ decomposition-based algorithm is designed to solve this two-stage stochastic mixed-integer program. Computational results based on some practical numerical experiments are presented to provide insights on applying the deterministic versus the stochastic programming approach, and to demonstrate the efficacy of the proposed algorithm as compared with directly solving the model using its deterministic equivalent.  相似文献   

7.
The existing assignment problems for assigning n jobs to n individuals are limited to the considerations of cost or profit incurred by each possible assignment. However, in real applications, various inputs and outputs are usually concerned in an assignment problem, such as a general decision-making problem. This paper develops a procedure for resolving assignment problems with multiple incommensurate inputs and outputs for each possible assignment. The concept of the relative efficiency in using various resources, instead of cost or profit, is adopted for each possible assignment of the problem. Data envelopment analysis (DEA) is employed in this paper to measure the efficiency of one assignment relative to that of the others according to a set of decision-making units. A composite efficiency index, consisting of two kinds of relative efficiencies under different comparison bases, is defined to serve as the performance measurement of each possible assignment in the problem formulation. A mathematical programming model for the extended assignment problem is proposed, which is then expressed as a classical integer linear programming model to determine the assignments with the maximum efficiency. A numerical example is used to demonstrate the approach.  相似文献   

8.
This paper proposes a mixed integer linear programming model and solution algorithm for solving supply chain network design problems in deterministic, multi-commodity, single-period contexts. The strategic level of supply chain planning and tactical level planning of supply chain are aggregated to propose an integrated model. The model integrates location and capacity choices for suppliers, plants and warehouses selection, product range assignment and production flows. The open-or-close decisions for the facilities are binary decision variables and the production and transportation flow decisions are continuous decision variables. Consequently, this problem is a binary mixed integer linear programming problem. In this paper, a modified version of Benders’ decomposition is proposed to solve the model. The most difficulty associated with the Benders’ decomposition is the solution of master problem, as in many real-life problems the model will be NP-hard and very time consuming. In the proposed procedure, the master problem will be developed using the surrogate constraints. We show that the main constraints of the master problem can be replaced by the strongest surrogate constraint. The generated problem with the strongest surrogate constraint is a valid relaxation of the main problem. Furthermore, a near-optimal initial solution is generated for a reduction in the number of iterations.  相似文献   

9.
Uncertain programming model for uncertain optimal assignment problem   总被引:1,自引:0,他引:1  
This paper employs uncertain programming to deal with uncertain optimal assignment problem in which profit is uncertain. Within the framework of uncertain programming, it gives the uncertainty distribution of the optimal assignment profit, and the concept of α-optimal assignment for uncertain optimal assignment problem is proposed. Then α-optimal model is also constructed. Taking advantage of properties of uncertainty theory, α-optimal model can be transformed into a corresponding deterministic form, which can be solved by Kuhn–Munkres algorithm.  相似文献   

10.
We study a class of capacity acquisition and assignment problems with stochastic customer demands often found in operations planning contexts. In this setting, a supplier utilizes a set of distinct facilities to satisfy the demands of different customers or markets. Our model simultaneously assigns customers to each facility and determines the best capacity level to operate or install at each facility. We propose a branch-and-price solution approach for this new class of stochastic assignment and capacity planning problems. For problem instances in which capacity levels must fall between some pre-specified limits, we offer a tailored solution approach that reduces solution time by nearly 80% over an alternative approach using a combination of commercial nonlinear optimization solvers. We have also developed a heuristic solution approach that consistently provides optimal or near-optimal solutions, where solutions within 0.01% of optimality are found on average without requiring a nonlinear optimization solver.  相似文献   

11.
We study the acquisition and production planning problem for a hybrid manufacturing/remanufacturing system with core acquisition at two (high and low) quality conditions. We model the problem as a stochastic dynamic programming, derive the optimal dynamic acquisition pricing and production policy, and analyze the influences of system parameters on the acquisition prices and production quantities. The production cost differences among remanufacturing high- and low-quality cores and manufacturing new products are found to be critical for the optimal production and acquisition pricing policy: the acquisition price of high-quality cores is increasing in manufacturing and remanufacturing cost differences, while the acquisition price of low-quality cores is decreasing in the remanufacturing cost difference between high- and low-quality cores and increasing in manufacturing and remanufacturing cost differences; the optimal remanufacturing/manufacturing policy follows a base-on-stock pattern, which is characterized by some crucial parameters dependent on these cost differences.  相似文献   

12.
In many service industries, firms offer a portfolio of similar products based on different types of resources. Mismatches between demand and capacity can therefore often be managed by using product upgrades. Clearly, it is desirable to consider this possibility in the revenue management systems that are used to decide on the acceptance of requests. To incorporate upgrades, we build upon different dynamic programming formulations from the literature and gain several new structural insights that facilitate the control process under certain conditions. We then propose two dynamic programming decomposition approaches that extend the traditional decomposition for capacity control by simultaneously considering upgrades as well as capacity control decisions. While the first approach is specifically suited for the multi-day capacity control problem faced, for example, by hotels and car rental companies, the second one is more general and can be applied in arbitrary network revenue management settings that allow upgrading. Both approaches are formally derived and analytically related to each other. It is shown that they give tighter upper bounds on the optimal solution of the original dynamic program than the well-known deterministic linear program. Using data from a major car rental company, we perform computational experiments that show that the proposed approaches are tractable for real-world problem sizes and outperform those disaggregated, successive planning approaches that are used in revenue management practice today.  相似文献   

13.
The assignment problem is a well-known operations research model. Its various extensions have been applied to the design of distributed computer systems, job assignment in telecommunication networks, and solving diverse location, truck routing and job shop scheduling problems.This paper focuses on a dynamic generalization of the assignment problem where each task consists of a number of units to be performed by an agent or by a limited number of agents at a time. Demands for the task units are stochastic. Costs are incurred when an agent performs a task or a group of tasks and when there is a surplus or shortage of the task units with respect to their demands. We prove that this stochastic, continuous-time generalized assignment problem is strongly NP-hard, and reduce it to a number of classical, deterministic assignment problems stated at discrete time points. On this basis, a pseudo-polynomial time combinatorial algorithm is derived to approximate the solution, which converges to the global optimum as the distance between the consecutive time points decreases. Lower bound and complexity estimates for solving the problem and its special cases are found.  相似文献   

14.
The generalized assignment problem (GAP) has been studied by numerous researchers over the past 30 years or so. Simply stated, one must find a minimum-cost assignment of tasks to agents such that each task is assigned to exactly one agent and such that each agent's resource capacity is honoured. The problem is known to be NP-hard. In this paper, we study the elastic generalized assignment problem (EGAP). The elastic version of GAP allows agent resource capacity to be violated at additional cost. Another version allows undertime costs to be assessed as well if an agent's resource capacity is not used to its full extent. The EGAP is also NP-hard. We describe a special-purpose branch-and-bound algorithm that utilizes linear programming cuts, feasible solution generators, Lagrangean relaxation and subgradient optimization. We present computational results on a large collection of randomly generated ‘hard’ problems with up to 4000 binary variables.  相似文献   

15.
This paper considers a class of bilevel linear programming problems in which the coefficients of both objective functions are fuzzy random variables. The main idea of this paper is to introduce the Pareto optimal solution in a multi-objective bilevel programming problem as a solution for a fuzzy random bilevel programming problem. To this end, a stochastic interval bilevel linear programming problem is first introduced in terms of α-cuts of fuzzy random variables. On the basis of an order relation of interval numbers and the expectation optimization model, the stochastic interval bilevel linear programming problem can be transformed into a multi-objective bilevel programming problem which is solved by means of weighted linear combination technique. In order to compare different optimal solutions depending on different cuts, two criterions are given to provide the preferable optimal solutions for the upper and lower level decision makers respectively. Finally, a production planning problem is given to demonstrate the feasibility of the proposed approach.  相似文献   

16.
We consider the application of Dantzig-Wolfe decomposition to stochastic integer programming problems arising in the capacity planning of electricity transmission networks that have some switchable transmission elements. The decomposition enables a column-generation algorithm to be applied, which allows the solution of large problem instances. The methodology is illustrated by its application to a problem of determining the optimal investment in switching equipment and transmission capacity for an existing network. Computational tests on IEEE test networks with 73 nodes and 118 nodes confirm the efficiency of the approach.  相似文献   

17.
The user equilibrium traffic assignment principle is very important in the traffic assignment problem. Mathematical programming models are designed to solve the user equilibrium problem in traditional algorithms. Recently, the Physarum shows the ability to address the user equilibrium and system optimization traffic assignment problems. However, the Physarum model are not efficient in real traffic networks with two-way traffic characteristics and multiple origin–destination pairs. In this article, a modified Physarum-inspired model for the user equilibrium problem is proposed. By decomposing traffic flux based on origin nodes, the traffic flux from different origin–destination pairs can be distinguished in the proposed model. The Physarum can obtain the equilibrium traffic flux when no shorter path can be discovered between each origin–destination pair. Finally, numerical examples demonstrate the rationality and convergence properties of the proposed model.  相似文献   

18.
In this paper we apply stochastic programming modelling and solution techniques to planning problems for a consortium of oil companies. A multiperiod supply, transformation and distribution scheduling problem—the Depot and Refinery Optimization Problem (DROP)—is formulated for strategic or tactical level planning of the consortium's activities. This deterministic model is used as a basis for implementing a stochastic programming formulation with uncertainty in the product demands and spot supply costs (DROPS), whose solution process utilizes the deterministic equivalent linear programming problem. We employ our STOCHGEN general purpose stochastic problem generator to ‘recreate’ the decision (scenario) tree for the unfolding future as this deterministic equivalent. To project random demands for oil products at different spatial locations into the future and to generate random fluctuations in their future prices/costs a stochastic input data simulator is developed and calibrated to historical industry data. The models are written in the modelling language XPRESS-MP and solved by the XPRESS suite of linear programming solvers. From the viewpoint of implementation of large-scale stochastic programming models this study involves decisions in both space and time and careful revision of the original deterministic formulation. The first part of the paper treats the specification, generation and solution of the deterministic DROP model. The stochastic version of the model (DROPS) and its implementation are studied in detail in the second part and a number of related research questions and implications discussed.  相似文献   

19.
In this paper, we first describe a constraint generation scheme for probabilistic mixed integer programming problems. Next, we present a decomposition approach to the peak capacity expansion planning of interconnected hydrothermal generating systems, with bounds on the transmission capacity between the regions. The objective is to minimize investments in generating units and interconnection links, subject to constraints on supply reliability. The problem is formulated as a stochastic integer program. The constraint generation scheme, which is similar to Benders decomposition, is applied in the solution of the peak capacity expansion problem. The master problem in this decomposition scheme is an integer program, solved by implicit enumeration. The operating subproblem corresponds to a stochastic network flow problem, and is solved by a maximum flow algorithm and Monte Carlo simulation. The approach is illustrated through a case study involving the expansion of the system of the Brazilian Southeastern region.  相似文献   

20.
Several heuristics for the capacitated multistage production planning problem with concave production costs, based on traditional production planning techniques and linear programming, are stated and empirically evaluated using a new capacity relaxation of the problem to furnish lower bounds on cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号