共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
C-F bond activation of ortho-fluorinated benzalimines 2,6-F(2)C(6)R1R2R3-CH=N-R (1-3) using the electron-rich complex Fe(PMe(3))(4) is reported. With the assistance of the imine group as the anchoring group, bis-chelated iron(II) complexes (C(6)FR1R2R3-CH=N-R)(2)Fe(PMe(3))(2) (4-6) were formed. The reaction of 2,6-difluorobenzylidenenaphthalen-1-amine 2,6-F(2)C(6)H(3)-CH=N-C(10)H(7) (9) with Fe(PMe(3))(4) affords [CNC]-pincer iron(II) complex (C(6)H(3)F-CH=N-C(10)H(6))Fe(PMe(3))(3) (10) through both C-F and C-H bond activation and π-(C=N) coordinate iron(0) complex (C(6)H(3)F-CH=N-C(10)H(7))(2)Fe(PMe(3))(2) (11) with C,C-coupling, while a similar reaction with perfluorobenzylidenenaphthalen-1-amine C(6)F(5)-CH=N-C(10)H(7) (14) gave rise to only [CNC]-pincer iron(II) complex (C(6)F(4)-CH=N-C(10)H(6))Fe(PMe(3))(3) (15). The proposed formation mechanisms of these complexes are discussed. The structures of complexes 5, 6, 10 and 11 were confirmed by X-ray single crystal diffraction. 相似文献
4.
A selective palladium-catalyzed Suzuki-Miyaura coupling reaction of polyfluorophenyl oxazolines through ortho C-F activation is described. It was found that reactions with DPPF as the ligand occurred much faster than those with other ligands. A variety of arylboronic acids including challenging functionalized arylboronic acids such as enolizable ketones, aldehyde, cyano, ester, and trifluoromethyl groups were tolerated with the reaction conditions. 相似文献
5.
A novel fluorous tagging-detagging strategy has been developed featuring a fluorination as the detagging process; fluorous allylsilanes were prepared by cross-metathesis and subsequently subjected to electrophilic fluorodesilylation; Selectfluor was used as the detagging reagent; the resulting allylic fluorides were successfully purified by fluorous solid phase extraction. 相似文献
6.
7.
The first example of a catalytically active system for Suzuki-type cross-coupling reactions of perfluorinated arenes such as octafluorotoluene and decafluorobiphenyl is presented. 相似文献
8.
Schwan AL 《Chemical Society reviews》2004,33(4):218-224
Underappreciated in the realm of palladium catalyzed cross-coupling chemistry is the formation of phosphorous-carbon bonds. This tutorial review summarises a collection of important contributions in the area, providing a flavour of the many types of phosphorus species that are participants in palladium catalyzed phosphorus-carbon bond formation. Recent developments include the usage of the cross-coupling reaction for preparation of phosphine ligands and the involvement of low molecular weight phosphinic acid derivatives for the synthesis of unsaturated phosphinic and phosphonic acid derivatives. Mechanistic cycles are offered in some instances. Stereochemical issues are addressed where applicable. The literature is covered to mid 2003. 相似文献
9.
The C-F bond-forming step in the fluorinase, the only native fluorination enzyme characterized to date, has been studied. The enzyme catalyzes the reaction between S-adenosyl-L-methionine (SAM) and fluoride ions to form 5'-fluoro-5'-deoxyadenosine (5'-FDA) and L-methionine. To obtain an insight into the mechanism of this unusual enzymatic reaction and to elucidate the role of the enzyme in catalysis, we have explored the conformational energetics of SAM and the intrinsic reactivity patterns of SAM and fluoride with DFT (BP86) and continuum solvent methods, before investigating the full enzymatic system with combined DFT/CHARMM calculations. We find that the enzymatic reaction follows an S(N)2 reaction mechanism, concurring with the intrinsic reactivity preferences in solution. The formation of sulfur ylides is thermodynamically strongly disfavored, and an alternative elimination-addition mechanism involving the concerted anti-Markovnikov addition of HF to an enol ether is energetically viable, but kinetically prohibitive. The S(N)2 activation energy is 92 (112) kJ mol(-)(1) in solution, but only 53 (63) kJ mol(-1) in the enzyme, and the reaction energy in the enzyme is -25 (-34) kJ mol(-1) (values in parentheses are B3LYP single-point energies). The fluorinase thus lowers the barrier for C-F bond formation by 39 (49) kJ mol(-)(1). A decomposition analysis shows that the major role of the enzyme is in the preparation and positioning of the substrates. 相似文献
10.
11.
Carbon-carbon bond activation of diphenylacetylene and several substituted derivatives has been achieved via photolysis and studied. Pt0-acetylene complexes with eta2-coordination of the alkyne, along with the corresponding PtII C-C activated photolysis products, have been synthesized and characterized, including X-ray crystal structural analysis. While the C-C cleavage reaction occurs readily under photochemical conditions, thermal activation of the C-C bonds or formation of PtII complexes was not observed. However, the reverse reaction, C-C reductive coupling (PtII --> Pt0), did occur under thermal conditions, allowing the determination of the energy barriers for C-C bond formation from the different PtII complexes. For the reaction (dtbpe)Pt(-Ph)(-CCPh) (2) --> (dtbpe)Pt(eta2-PhCCPh) (1), DeltaG was 32.03(3) kcal/mol. In comparison, the energy barrier for the C-C bond formation in an electron-deficient system, that is, (dtbpe)Pt(C6F5)(CCC6F5) (6) --> (dtbpe)Pt(eta2-bis(pentafluorophenyl)acetylene) (5), was found to be 47.30 kcal/mol. The energy barrier for C-C bond formation was able to be tuned by electronically modifying the substrate with electron-withdrawing or electron-donating groups. Upon cleavage of the C-C bond in (dtbpe)Pt(eta2-(p-fluorophenyl-p-tolylacetylene) (9), both (dtbpe)Pt(p-fluorophenyl)(p-tolylacetylide) (10) and (dtbpe)Pt(p-tolyl)(p-fluorophenylacetylide) (11) were obtained. Kinetic studies of the reverse reaction confirmed that 10 was more stable toward the reductive coupling [the term "reductive coupling" is defined as the formation of (dtbpe)Pt(eta2-acetylene) complex from the PtII complex] than 11 by 1.22 kcal/mol, under the assumption that the transition-state energies are the same for the two pathways. The product ratio for 10 and 11 was 55:45, showing that the electron-deficient C-C bond is only slightly preferentially cleaved. 相似文献
12.
A facile synthesis of 7-alkylamino- and 7-cycloalkylaminotetracycline derivatives has been accomplished using an in situ generated aminostannane precursor. This procedure is advantageous in that it allows the concise synthesis of a number of unreported tetracycline derivatives that are cumbersome to prepare through traditional methods. These compounds are crucial to understanding structure activity relationships in the D-ring of tetracycline-type antibiotics and the acquired efflux resistance mechanism to this class of antibiotics. 相似文献
13.
A model study of DNA-directed peptide ligation has been developed by transferring fluorescent reporting group from small molecule thioester to a DNA strand (template DNA) in the presence of a thiol-functionalized DNA strand (auxiliary DNA), mimicking the Native Chemical Ligation (NCL) reaction. This DNA-directed transfer shows dependence on the sequence complementarity of the two DNA strands, with in situ generated 4-thiolphenylmethyl functionalized oligonucleotide as the auxiliary DNA strand, under mild basic condition (pH=8.5), and with tris(2-carboxyethyl) phosphine hydrochloride (TCEP) as a reducing agent. Reactions with different amino acid α-thioesters resulted in varied transfer efficiencies from glycine to α-substituted amino acids. This study has provided the basic foundation to use DNA-programmed chemistry toward the chemical synthesis or unnatural modification of protein molecules. 相似文献
14.
Luigi Busetto Mauro Salmi Valerio Zanotti 《Journal of organometallic chemistry》2007,692(11):2245-2252
The bridging diiron thiocarbyne complex [Fe2{μ-CS(Me)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1) reacts with activated olefins (methyl acrylate, acrylonitrile, styrene, diethyl maleate), in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η1:η3-Cα(SMe)Cβ(R′)Cγ(H)(R″)} (μ-CO)(CO)(Cp)2] (R″ = CO2Me, R′ = H, 3a; R″ = CN, R′ = H, 3b; R″ = C6H5, R′ = H, 3c; R″ = R′ = CO2Et, 3d). The coupling reaction of olefin with thiocarbyne is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs between the less substituted alkene carbon and the thiocarbyne. Moreover, olefinic hydrogens of the bridging ligands are mutually trans.The reactions of 3a-b with MeSO3CF3 result, selectively, in the formation of the cationic μ-sulphonium allylidene complexes [Fe2{μ-η1:η3-Cα(SMe2)Cβ (H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CO2Me, 4a; R = CN, 4b). Compound 4a undergoes displacement of the SMe2 group by nucleophiles such as NaBH4, NBu4CN and NaOMe, affording the complexes [Fe2{μ-η1:η3-Cα(R)Cβ (H)Cγ(H)(CO2Me)}(μ-CO)(CO)(Cp)2] (R = H, 5a; R = CN, 5b; R = OMe, 5c), respectively. The molecular structures of 3a and 5a have been determined by X-ray diffraction studies. 相似文献
15.
16.
17.
The alpha-C-H bonds of 3-methyl-2-butanone, 3-pentanone, and 2-methyl-3-pentanone were activated on the sulfur center of the disulfide-bridged ruthenium dinuclear complex [(RuCl(P(OCH3)3)2)2(mu-S2)(mu-Cl)2] (1) in the presence of AgX (X = PF6, SbF6) with concomitant formation of C-S bonds to give the corresponding ketonated complexes [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHR1COR2)(Ru(CH3CN)3(P(OCH3)3)2)]X3 ([5](PF6)3, R1 = H, R2 = CH(CH3)2, X = PF6; [6](PF6)3, R1 = CH3, R2 = CH2CH3, X = PF6; [7](SbF6)3, R1 = CH3, R2 = CH(CH3)2, X = SbF6). For unsymmetric ketones, the primary or the secondary carbon of the alpha-C-H bond, rather than the tertiary carbon, is preferentially bound to one of the two bridging sulfur atoms. The alpha-C-H bond of the cyclic ketone cyclohexanone was cleaved to give the complex [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SS-1- cyclohexanon-2-yl)(Ru(CH3CN)3(P(OCH3)3)2)](SbF6)3 ([8](SbF6)3). And the reactions of acetophenone and p-methoxyacetophenone, respectively, with the chloride-free complex [(Ru(CH3CN)3(P(OCH3)3)2)2(mu-S2)]4+ (3) gave [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCH2COAr)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([9](CF3SO3)3, Ar = Ph; [10](CF3SO3)3, Ar = p-CH3OC6H4). The relative reactivities of a primary and a secondary C-H bond were clearly observed in the reaction of butanone with complex 3, which gave a mixture of two complexes, i.e., [(Ru(CH3CN)2(P(OCH3)3)20(mu-SSCH2COCH2CH3)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([11](CF3SO3)3) and [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHCH3COCH3)(Ru(CH3CN)3(P(OCH3)2)](CF3SO3)3 ([12](CF3SO3)3), in a molar ratio of 1:1.8. Complex 12 was converted to 11 at room temperature if the reaction time was prolonged. The relative reactivities of the alpha-C-H bonds of the ketones were deduced to be in the order 2 degrees > 1 degree > 3 degrees, on the basis of the consideration of contributions from both electronic and steric effects. Additionally, the C-S bonds in the ketonated complexes were found to be cleaved easily by protonation at room temperature. The mechanism for the formation of the ketonated disulfide-bridged ruthenium dinuclear complexes is as follows: initial coordination of the oxygen atom of the carbonyl group to the ruthenium center, followed by addition of an alpha-C-H bond to the disulfide bridging ligand, having S=S double-bond character, to form a C-S-S-H moiety, and finally completion of the reaction by deprotonation of the S-H bond. 相似文献
18.
Metal-oxos are critical intermediates for the management of oxygen and its activation. The reactivity of the metal-oxo is central to the formation of O-O bonds, which is the essential step for oxygen generation. Two basic strategies for the formation of O-O bonds at metal-oxo active sites are presented. The acid-base (AB) strategy involves the attack of a nucleophilic oxygen species (e.g., hydroxide) on an electrophilic metal-oxo. Here, active-site designs must incorporate the assembly of a hydroxide (or water) proximate to a high-valent metal-oxo of even d electron count. For the radical coupling (RC) strategy, two high-valent metal-oxos of an odd d electron count are needed to drive O-O coupling. This Forum Article focuses on the different electronic structures of terminal metal-oxos that support AB and RC strategies and the design of ligand scaffolds that engender these electronic structures. 相似文献
19.
Vincenzo G. Albano Fabio Marchetti Stefano Zacchini 《Journal of organometallic chemistry》2006,691(20):4234-4243
The diiron vinyliminium complexes [Fe2{μ-η1:η3-C(R′)C(H)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R′ = SiMe3 (1a); R = Me, R′ = CH2OH (1b); R = CH2Ph, R′ = Tol (1c), Tol = 4-MeC6H4; R = CH2Ph, R′ = COOMe (1d); R = CH2Ph, R′ = SiMe3 (1e)) undergo regio- and stereo-selective addition by cyanide ion (from ), affording the corresponding bridging cyano-functionalized allylidene compounds [Fe2{μ-η1:η3-C(R′)C(H)C(CN)N(Me)(R)}(μ-CO)(CO)(Cp)2] (3a-e), in good yields. Similarly, the diiron vinyliminium complexes [Fe2{μ-η1:η3-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = R′ = Me (2a); R = Me, R′ = Ph (2b); R = CH2Ph, R′ = Me (2c); R = CH2Ph, R′ = COOMe (2d)) react with cyanide and yield [Fe2{μ-η1:η3-C(R′)C(R′)C(CN)N(Me)(R)}(μ-CO)(CO)(Cp)2] (9a-d). The reactions of the vinyliminium complex [Fe2{μ-η1:η3-C(Tol)CHCN(Me)(4-C6H4CF3)}(μ-CO)(CO)(Cp)2][SO3CF3] (4) with NaBH4 and afford the allylidene [Fe2{μ-C(Tol)C(H)C(H)N(Me)(C6H4CF3)}(μ-CO)(CO)(Cp)2] (5) and the cyanoallylidene [Fe2{μ-C(Tol)C(H)C(CN)N(Me)(C6H4CF3)}(μ-CO)(CO)(Cp)2] (6), respectively. Analogously, the diruthenium vinyliminium complex [Ru2{μ-η1:η3-C(SiMe3)CHCN(Me)(CH2Ph)}(μ-CO)(CO)(Cp)2][SO3CF3] (7) reacts with to give [Ru2{μ-η1:η3-C(SiMe3)CHC(CN)N(Me)(CH2Ph)}(μ-CO)(CO)(Cp)2] (8).Finally, cyanide addition to [Fe2{μ-η1:η3-C(COOMe)C(COOMe)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2e) (Xyl = 2,6-Me2C6H3), yields the cyano-functionalized bis-alkylidene complex [Fe2{μ-η1:η2-C(COOMe)C(COOMe)(CN)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (10). The molecular structures of 3a and 9a have been elucidated by X-ray diffraction. 相似文献
20.
Carbon-heteroatom bond formation from copper(III) is commonly invoked as a key step in catalytic reactions, including the century-old Ullmann reactions. Well-defined examples of such reactions have never been observed. Here, we demonstrate that a well-defined Cu(III)-aryl species reacts with a variety nitrogen nucleophiles to undergo facile carbon-nitrogen bond formation. 相似文献