首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of [CO] on acetyl-CoA synthesis activity of the isolated alpha subunit of acetyl-coenzyme A synthase/carbon monoxide dehydrogenase from Moorella thermoacetica was determined. In contrast to the complete alpha(2)beta(2) enzyme where multiple CO molecules exhibit strong cooperative inhibition, alpha was weakly inhibited, apparently by a single CO with K(I) = 1.5 +/- 0.5 mM; other parameters include k(cat) = 11 +/- 1 min(-)(1) and K(M) = 30 +/- 10 microM. The alpha subunit lacked the previously described "majority" activity of the complete enzyme but possessed its "residual" activity. The site affording cooperative inhibition may be absent or inoperative in isolated alpha subunits. Ni-activated alpha rapidly and reversibly accepted a methyl group from CH(3)-Co(3+)FeSP affording the equilibrium constant K(MT) = 10 +/- 4, demonstrating the superior nucleophilicity of alpha(red) relative to Co(1+)FeSP. CO inhibited this reaction weakly (K(I) = 540 +/- 190 microM). NiFeC EPR intensity of alpha developed in accordance with an apparent K(d) = 30 microM, suggesting that the state exhibiting this signal is not responsible for inhibiting catalysis or methyl group transfer and that it may be a catalytic intermediate. At higher [CO], signal intensity declined slightly. Attenuation of catalysis, methyl group transfer, and the NiFeC signal might reflect the same weak CO binding process. Three mutant alpha(2)beta(2) proteins designed to block the tunnel between the A- and C-clusters exhibited little/no activity with CO(2) as a substrate and no evidence of cooperative CO inhibition. This suggests that the tunnel was blocked by these mutations and that cooperative CO inhibition is related to tunnel operation. Numerous CO molecules might bind cooperatively to some region associated with the tunnel and institute a conformational change that abolishes the majority activity. Alternatively, crowding of CO in the tunnel may control flow through the tunnel and deliver CO to the A-cluster at the appropriate step of catalysis. Residual activity may involve CO from the solvent binding directly to the A-cluster.  相似文献   

2.
The 5-subunit-containing acetyl-CoA decarbonylase/synthase (ACDS) complex plays an important role in methanogenic Archaea that convert acetate to methane, by catalyzing the central reaction of acetate C-C bond cleavage in which acetyl-CoA serves as the acetyl donor substrate reacting at the ACDS beta subunit active site. The properties of Ni in the active site A-cluster in the ACDS beta subunit from Methanosarcina thermophila were investigated. A recombinant, C-terminally truncated form of the beta subunit was employed, which mimics the native subunit previously isolated from the ACDS complex, and contains an A-cluster composed of an [Fe(4)S(4)] center bridged to a binuclear Ni-Ni site. The electronic structures of these two Ni were studied using L-edge absorption and X-ray magnetic circular dichroism (XMCD) spectroscopy. The L-edge absorption data provided evidence for two distinct Ni species in the as-isolated enzyme, one with low-spin Ni(II) and the other with high-spin Ni(II). XMCD spectroscopy confirmed that the species producing the high-spin signal was paramagnetic. Upon treatment with Ti(3+) citrate, an additional Ni species emerged, which was assigned to Ni(I). By contrast, CO treatment of the reduced enzyme converted nearly all of the Ni in the sample to low-spin Ni(II). The results implicate reaction of a high-spin tetrahedral Ni site with CO to form an enzyme-CO adduct transformed to a low-spin Ni(II) state. These findings are discussed in relation to the mechanism of C-C bond activation, in connection with the model of the beta subunit A-cluster developed from companion Ni and Fe K edge, XANES, and EXAFS studies.  相似文献   

3.
In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha(2)beta(2) tetrameric 310 kDa bifunctional enzyme. ACS catalyzes the reversible reduction of CO(2) to CO and the synthesis of acetyl-CoA from CO (or CO(2) in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains seven metal-sulfur clusters of four different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kDa beta subunit, while the A-cluster, a Ni-X-Fe(4)S(4) cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kDa alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire beta subunit was removed, as long as CO, rather than CO(2) and a low-potential reductant, was used as a substrate. Truncating an approximately 30 kDa region from the N-terminus of the alpha subunit yielded a 49 kDa protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO-binding properties. Further truncation afforded a 23 kDa protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe(4)S(4)](2+) clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 and 82 kDa fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multicentered metalloenzymes and to generate new complex metalloenzymes with interesting properties.  相似文献   

4.
Highly purified preparations of Streptococcus faecalis ATPase contain a similar but inactive protein detected by prolonged polyacrylamide gel electrophoresis. The inactive protein appears to arise by proteolytic cleavage of the major subunits in the enzyme. By use of a new technique, subunit analysis in SDS gels was performed on the enzyme band and the inactive protein band excised from a polyacrylamide gel after electrophoresis. The results indicated that the ATPase has the composition alpha3beta3gamma in which alpha = 60,000, beta = 55,000, and gamma = 37,000 daltons. The inactive protein appears to have the composition (f)6 in which f = 49,000 daltons. There is also evidence that the enzyme band contains some slightly modified forms of the ATPase, such as alpha3beta2 (f)gamma. The inactive protein lacks the capacity for tight nucleotide binding. Our experiments show that the tight ATPase-nucleotide complex formed in S. faecalis cells (the endogenous complex) behaves differently from the tight complex formed in vitro (the exogenous complex). We prepared a doubly labeled complex containing endogenous 32P-labeled ADP and ATP and exogenous 3H-labeled ADP. We observed that the addition of free nucelotide to the doubly labeled ATPase displaced the exogenous bound ligand from the enzyme but not the endogenous bound nucleotide. We suggest that the displaceable and nondisplaceable forms of the tight ATPase-nucleotide complex correspond to two different conformational states of the enzyme.  相似文献   

5.
Acetyl-coenzyme A (CoA) synthase/carbon monoxide dehydrogenase (ACS/CODH) is a bifunctional enzyme that generates CO from carbon dioxide in the C-cluster of the beta subunit and synthesizes acetyl-CoA from carbon monoxide (CO), CoA, and CH3+ at the active site of the A-cluster in the alpha subunit. On the basis of density functional calculations, we predict that methylation of Nip occurs first, and CO then adds to the NipII-CH3 species to form the intermediate, NipII(CO)(CH3), in which Nip deligates one of its SNid bonds. The CO-insertion/CH3-migration occurs on one metal, the proximal Ni, forming the trigonal planar NipII-acetyl intermediate. The thiolate can bind to NipII and reductively eliminate the thioester. Our calculations disfavor the unprecedented bimetallic CO-insertion/CH3-migration. Ni in the proximal site produces a better catalyst than does Cu.  相似文献   

6.
The Ser/Thr kinase CK2 (previously called casein kinase 2) is composed of two catalytic chains (CK2 alpha) attached to a dimer of noncatalytic subunits (CK2 beta). CK2 is involved in suppression of apoptosis, cell survival, and tumorigenesis. To investigate these activities and possibly affect them, selective CK2 inhibitors are required. An often-used CK2 inhibitor is 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). In a complex structure with human CK2 alpha, DRB binds to the canonical ATP cleft, but additionally it occupies an allosteric site that can be alternatively filled by glycerol. Inhibition kinetic studies corroborate the dual binding mode of the inhibitor. Structural comparisons reveal a surprising conformational plasticity of human CK2 alpha around both DRB binding sites. After local rearrangement, the allosteric site serves as a CK2 beta interface. This opens the potential to construct molecules interfering with the CK2 alpha/CK2 beta interaction.  相似文献   

7.
Escherichia coli ribonucleotide reductase (RNR) catalyzes the reduction of nucleotides to 2'-deoxynucleotides. The active enzyme is a 1:1 complex of two homodimeric subunits, alpha2 and beta2. The alpha2 is the site of nucleotide reduction, and beta2 harbors a diferric tyrosyl radical (Y122*) cofactor. Turnover requires formation of a cysteinyl radical (C439*) in the active site of alpha2 at the expense of the Y122* in beta2. A docking model for the alpha2beta2 interaction and a pathway for radical transfer from beta2 to alpha2 have been proposed. This pathway contains three Ys: Y356 in beta2 and Y731/Y730 in alpha2. We have previously incorporated 3-hydroxytyrosine and 3-aminotyrosine into these residues and showed that they act as radical traps. In this study, we use these alpha2/beta2 variants and PELDOR spectroscopy to measure the distance between the Y122* in one alphabeta pair and the newly formed radical in the second alphabeta pair. The results yield distances that are similar to those predicted by the docking model for radical transfer. Further, they support a long-range radical initiation process for C439* generation and provide a structural constraint for residue Y356, which is thermally labile in all beta2 structures solved to date.  相似文献   

8.
We have partially purified active delta and epsilon subunits of the E. coli membrane-bound Mg2+-ATPase (ECF1). Treating purified ECF1 with 50% pyridine precipitates the major subunits (alpha, beta, and gamma) of the enzyme, but the two minor subunits (delta and epsilon), which are present in relatively small amounts, remain in solution. The delta and epsilon subunits were then resolved from one another by anion exchange chromatography. The partially purified epsilon strongly inhibits the hydrolytic activity of ECF1. The epsilon fraction inhibits both the highly purified five-subunit ATPase and the enzyme deficient in the delta subunit. The latter result indicates that the delta subunit is not required for inhibition by epsilon. By contrast, two-subunit enzyme, consisting chiefly of the alpha and beta subunits, was insensitive to the ATPase inhibitor, suggesting that the gamma subunit may be required for inhibition by epsilon. The partially purified delta subunit restored the capacity of ATPase deficient in delta to recombine with ATPase-depleted membranes and to reconstitute ATP-dependent transhydrogenase. Previously we reported (Biochem, Biophys. Res. Commun. 62:764 [1975]) that a fraction containing both the delta and epsilon subunits of ECF1 restored the capacity of ATPase missing delta to recombine with depleted membranes and to function as a coupling factor in oxidative phosphorylation and for the energized transhydrogenase. These reconstitution experiments using isolated subunits provide rather substantial evidence that the delta subunit is essential for attaching the ATPase to the membrane and that the epsilon subunit has a regulatory function as an inhibitor of the ATPase activity of ECF1.  相似文献   

9.
We present molecular docking studies on the inhibitors of GSK-3beta kinase in the enzyme binding sites of the X-ray complexes (1H8F, 1PYX, 1O9U, 1Q4L, 1Q5K, and 1UV5) using the Schr?dinger docking tool Glide. Cognate and cross-docking studies using standard precision (SP) and extraprecision (XP) algorithms have been carried out. Cognate docking studies demonstrate that docked poses similar to X-ray poses (root-mean-square deviations of less than 2 A) are found within the top four ranks of the GlideScore and E-model scores. However, cross-docking studies typically produce poses that are significantly deviated from X-ray poses in all but a couple of cases, implying potential for induced fit effects in ligand binding. In this light, we have also carried out induced fit docking studies in the active sites of 1O9U, 1Q4L, and 1Q5K. Specifically, conformational changes have been effected in the active sites of these three protein structures to dock noncognate ligands. Thus, for example, the active site of 1O9U has been induced to fit the ligands of 1Q4L, 1Q5K, and 1UV5. These studies produce ligand docked poses which have significantly lower root-mean-square deviations relative to their X-ray crystallographic poses, when compared to the corresponding values from the cross-docking studies. Furthermore, we have used an ensemble of the induced fit models and X-ray structures to enhance the retrieval of active GSK-3beta inhibitors seeded in a decoy database, normally used in Glide validation studies. Thus, our studies provide valuable insights into computational strategies useful for the identification of potential GSK-3beta inhibitors.  相似文献   

10.
Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.  相似文献   

11.
BACKGROUND: Using fixed receptor sites derived from high-resolution crystal structures in structure-based drug design does not properly account for ligand-induced enzyme conformational change and imparts a bias into the discovery and design of novel ligands. We sought to facilitate the design of improved drug leads by defining residues most likely to change conformation, and then defining a minimal manifold of possible conformations of a target site for drug design based on a small number of identified flexible residues. RESULTS: The crystal structure of thymidylate synthase from an important pathogenic target Pneumocystis carinii (PcTS) bound to its substrate and the inhibitor, BW1843U89, is reported here and reveals a new conformation with respect to the structure of PcTS bound to substrate and the more conventional antifolate inhibitor, CB3717. We developed an algorithm for determining which residues provide 'soft spots' in the protein, regions where conformational adaptation suggests possible modifications for a drug lead that may yield higher affinity. Remodeling the active site of thymidylate synthase with new conformations for only three residues that were identified with this algorithm yields scores for ligands that are compatible with experimental kinetic data. CONCLUSIONS: Based on the examination of many protein/ligand complexes, we develop an algorithm (SOFTSPOTS) for identifying regions of a protein target that are more likely to accommodate plastically to regions of a drug molecule. Using these indicators we develop a second algorithm (PLASTIC) that provides a minimal manifold of possible conformations of a protein target for drug design, reducing the bias in structure-based drug design imparted by structures of enzymes co-crystallized with inhibitors.  相似文献   

12.
Prevention of incorporation of dUTP into DNA is essential for maintenance of the genetic information. Prompt and specific removal of dUTP from the nucleotide pool, as expedited by the ubiquitous enzyme dUTPase, is therefore required for full viability in most biological systems. Conserved structural features perpetuate specificity in choice of substrate, which is crucial as hydrolysis of the structurally closely related nucleotides dTTP, dCTP and UTP would debilitate DNA and RNA synthesis. The most common family of dUTPases is the homotrimeric variety where X-ray structures are available for one bacterial, one mammalian and two retroviral dUTPases. These four enzymes have similar overall structural layouts, but the interactions that stabilise the trimer vary markedly, ranging from exclusively hydrophobic to water-mediated interactions. Trimeric dUTPases contain five conserved sequence motifs, positioned at the subunit interfaces where they contribute to the formation of the active sites. Each of the three identical active sites per trimer is built of residues contributed by all three subunits. One subunit provides residues involved in base and sugar recognition, where a beta-hairpin acts to maintain exquisite selectivity, while a second subunit contributes residues for phosphate interactions. The third subunit supplies a glycine-rich consensus motif located in the flexible C-terminal part of the subunit, known from crystallographic studies to cover the active site in the presence of substrate and certain substrate analogues. All dUTPases studied require the presence of a divalent metal ion, preferably Mg(2+), for optimal activity. The putative position of the essential metal ion has been identified in the structure of one retroviral dUTPase. Structure-function studies are essential if the properties of dUTPases are to be understood fully in relation to their biological role. In this review the structural arrangement of the homotrimeric dUTPases is discussed in the context of active site geometry, achievement of specificity and subunit interactions.  相似文献   

13.
The mitochondrial F(1)F(o) ATP synthase complex has a key role in cellular energy metabolism. The general architecture of the enzyme is conserved among species and consists of a globular catalytic moiety F(1), protruding out of the inner side of the membrane, a membrane integral proton translocating moiety F(o), and a stalk connecting F(1) to F(o). The X-ray crystallographic analysis of the structure of the bovine mitochondrial F(1) ATPase has provided a structural basis for the binding-change rotary mechanism of the catalytic process in F(1), in which the gamma subunit rotates in the central cavity of the F(1) alpha3/beta3 hexamer. Rotation of gamma and eta subunits in the E. coli enzyme and of, gamma and delta subunits in the mitochondrial enzyme, is driven, during ATP synthesis, by proton motive rotation of an oligomer of c subunits (10-12 copies) within the F(o) base piece. Average analysis of electron microscopy images and cross-linking results have revealed that, in addition to a central stalk, contributed by gamma and delta/eta subunits, there is a second lateral one connecting the peripheries of F(o) and F(1). To gain deeper insight into the mechanism of coupling between proton translocation and catalytic activity (ATP synthesis and hydrolysis), studies have been undertaken on the role of F(1) and F(o) subunits which contribute to the structural and functional connection between the catalytic sector F(1) and the proton translocating moiety F(o). These studies, which employed limited proteolysis, chemical cross-linking and functional analysis of the native and reconstituted F(1)F(o) complex, as well as isolated F(1), have shown that the N-terminus of alpha subunits, located at the top of the F(1) hexamer is essential for energy coupling in the F(1)F(o) complex. The alpha N-terminus domain appears to be connected to F(o) by OSCP (F(o) subunit conferring sensitivity of the complex to oligomycin). In turn, OSCP contacts F(o)I-PVP(b) and d subunits, with which it constitutes a structure surrounding the central gamma and delta rotary shaft. Cross-linking of F(o)I-PVP(b) and gamma subunits causes a dramatic enhancement of downhill proton translocation decoupled from ATP synthesis but is without effect on ATP driven uphill proton transport. This would indicate the existence of different rate-limiting steps in the two directions of proton translocation through F(o). In mitochondria, futile ATP hydrolysis by the F(1)F(o) complex is inhibited by the ATPase inhibitor protein (IF(1)), which reversibly binds at one side of the F(1)F(o) connection. The trans-membrane deltapH component of the respiratory deltap displaces IF(1) from the complex; in particular the matrix pH is the critical factor for IF(1)association and its related inhibitory activity. The 42L-58K segment of the IF(1) has been shown to be the most active segment of the protein; it interacts with the surface of one alpha/beta pairs of F(1), thus inhibiting, with the same pH dependence as the natural IF(1), the conformational interconversions of the catalytic sites involved in ATP hydrolysis. IF(1) has a relevant physiopathological role for the conservation of the cellular ATP pool in ischemic tissues. Under these conditions IF(1), which appears to be over expressed, prevents dissipation of the glycolytic ATP.  相似文献   

14.
Escherichia coli 3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation reaction between D-arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) to form KDO8P and inorganic phosphate (Pi). This enzyme exists as a tetramer in solution, which is important for catalysis. Two different states of the enzyme were obtained: i) PEP-bound and ii) PEP-unbound. The effect of the substrates and products on the overall structure of KDO8P synthase in both PEP-bound and unbound states was examined using electrospray ionization mass spectrometry. The analysis of our data showed that the complexes of the PEP-unbound enzyme with PEP (or Pi) favored the formation of monomers, while the complexes with A5P (or KDO8P) mainly favored dimers. The PEP-bound enzyme was found to exist in the monomer and dimer with a small amount of the tetramer, whereas the PEP-unbound form primarily exists in the monomer and dimer, and no tetramer was observed, suggesting that the bound PEP have a role in stabilization of the tetrameric structure. Taken together, the results imply that the addition of the substrates or products to the unbound enzyme may alter the subunit-subunit interactions and/or conformational change of the protein at the active site, and this study also demonstrates that the electrospray ionization mass spectrometric method may be a powerful tool in probing the subunit-subunit interactions and/or conformational change of multi-subunit protein upon binding to ligand.  相似文献   

15.
Vibrio harveyi luciferase, an alpha beta dimer, was effectively inactivated by treatment with the methylation agent methyl p-nitrobenzene sulfonate. However, inactivation of luciferase in the presence of excess amounts of this reagent did not follow pseudo-first-order kinetics. After taking the autodecay of this reagent into consideration in kinetic analysis, the pseudo-first-order constants and subsequently the second-order rate constant (83 min-1 M-1 at pH 7 and 23 degrees C) were determined. The inactivation rate can be retarded by the addition of the decanal or the reduced FMN substrate but not by the reaction product FMN. The binding of decanal specifically protected one target residue against modification with a concomitant protection of luciferase against inactivation. A pentapeptide containing this specific target residue was isolated and identified to be Phe-Gly-Ile-X-Arg with X corresponding to the S-methylated form of the cysteinyl residue at position 106 of the luciferase alpha subunit. It is concluded that this reactive alpha Cys-106 is at the aldehyde site and is also near the reduced flavin site of luciferase. The modified enzyme exhibited no gross conformational changes detectable by protein fluorescence measurements, which may be due to the small size change of the target cysteinyl residue after methylation. The methylated enzyme still retained the ability to bind one decanal and one reduced FMN without any substantial changes in binding affinities. The cause of luciferase inactivation by the methylation of alpha Cys-106 has been shown to be the impaired ability to form the 4a-hydroperoxy-flavin intermediate from the bound flavin substrate or to stabilize this intermediate.  相似文献   

16.
Acetyl coenzyme A synthase (ACS) is an alpha2beta2 tetramer in which the active-site A-cluster, located in the alpha subunits, consists of an Fe4S4 cubane bridged to a {Nip Nid} binuclear site. The alpha subunits exist in two conformations. In the open conformation, Nip is surface-exposed, while the proximal metal is buried in the closed conformation. Nip is labile and can be replaced by Cu. In this study, the effects of Zn are reported. ACS in which Zn replaced Nip was inactive and did not exhibit the so-called NiFeC EPR signal nor the ability to accept a methyl group from the corrinoid-iron-sulfur protein (CoFeSP). Once Zn-bound, it could not be replaced by subsequently adding Ni. The Zn-bound A-cluster cannot be reduced and bound with CO or become methylated, probably because Zn (like Cu) is insufficiently nucleophilic for these functions. Unexpectedly, Zn replaced Nip only while ACS was engaged in catalysis. Under these conditions, replacement occurred with kapp approximately 0.6 min-1. Replacement was blocked by including EDTA in the assay mix. Zn appears to replace Nip when ACS is in an intermediate state (or states) of catalysis but this(these) state(s) must not be present when ACS is reduced in CO alone, or in the presence of CoA, CoFeSP, or reduced methyl viologen. Nip appears susceptible to Zn-attack when the alpha subunit is in the open conformation and protected from attack when it is in the closed conformation. This is the first evidence that the structurally-characterized conformations of the alpha subunit change during catalysis, indicating a mechanistic role for this conformational change.  相似文献   

17.
The properties of anionic tobacco peroxidase (TOP) adsorbed on graphite electrode have been studied in direct and mediated electron transfer in a wall-jet flow injection system. The percentage of tobacco peroxidase molecules active in directelectron transfer is about 83%, which is higher than that for horeradish peroxidase (40–50%). This observation is explained in terms of the lower degree of glycosylation of TOP compared with horseradish peroxidase and, therefore, a reduced in terference from the oligosaccharide chains with direct electron transfer. Calcium ions cause an 11% drop in the reaction rate constant toward hydrogen peroxide. The detection limit of calcium chloride has been estimated as 5 m M. The results obtained by means of bioeletrochemistry, stopped-flow kinetics, and structural modeling provide evidence for the interaction between calcium cations and negatively charged residues at the distal domain (Glu-141, heme propionates, Asp-79, Asp-80) blocking the activesite. The observation that both soluble and immobilized enzyme under go conformational changes resulting in the blockade of the active site indicates that the immobilized enzyme preserves conformational flexibility. An even stronger suppressing effect of calcium ions on the rate constant for mediated electron transfer was observed. In the case of direct electron transfer, this couldmean that there is nodirect contact between the electrode and the active site of TOP. The electrons are shuttled from the active site to the surface of the electrode through electron transfer pathways in the protein globule that are sensitive to protein conformational changes.  相似文献   

18.
Chitin synthase is responsible for the biosynthesis of chitin, an essential component of the fungal cell wall. There is a long-standing question as to whether "processive" transferases such as chitin synthase operate in the same manner as non-processive transferases. The question arises from analysis of the polysaccharide structure--in chitin, for instance, each sugar residue is rotated approximately 180 degrees relative to the preceding sugar in the chain. This requires that the enzyme account for the alternating "up/down" configuration during biosynthesis. An enzyme with a single active site, analogous to the non-processive transferases--would have to accommodate a distorted glycosidic linkage at every other synthetic step. An alternative proposal is that the enzyme might assemble the disaccharide donor, addressing the "up/down" conformational problem prior to polymer synthesis. We present compelling evidence that this latter hypothesis is incorrect.  相似文献   

19.
Fluorescence spectra and soluble quenching of intrinsic protein fluorescence were used as indexes of conformational changes suffered by frog epidermis tyrosinase. The activation process and the immobilization of the enzyme involving either free amino groups or its carbohydrate moiety were studied. The conformational changes resulting from denaturation of each one of the protein derivatives, as well as the effect of active center copper extraction, were followed by fluorescence studies. The results showed that: (a) both activation and immobilization were accompanied by conformational changes of the protein leading to more unfolded states; (b) neither enzyme nor immobilized enzyme were fully unfolded upon denaturation although enzymic activity was lost; (c) the enzyme immobilized through its carbohydrate moiety was more unfolded upon denaturation than the enzyme immobilized through amino groups, thus pointing to a higher conformational stabilization in the last situation; and (d), that tryptophyl residues moved to a localization near the active site upon activation.  相似文献   

20.
The F1FO-ATP synthase is required for growth and viability of Mycobacterium tuberculosis and is a validated clinical target. A mycobacterium-specific loop of the enzyme's rotary γ subunit plays a role in the coupling of ATP synthesis within the enzyme complex. We report the discovery of a novel antimycobacterial, termed GaMF1, that targets this γ subunit loop. Biochemical and NMR studies show that GaMF1 inhibits ATP synthase activity by binding to the loop. GaMF1 is bactericidal and is active against multidrug- as well as bedaquiline-resistant strains. Chemistry efforts on the scaffold revealed a dynamic structure activity relationship and delivered analogues with nanomolar potencies. Combining GaMF1 with bedaquiline or novel diarylquinoline analogues showed potentiation without inducing genotoxicity or phenotypic changes in a human embryonic stem cell reporter assay. These results suggest that GaMF1 presents an attractive lead for the discovery of a novel class of anti-tuberculosis F-ATP synthase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号