首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, an axisymmetric turbulent boundary layer growing on a cylinder is investigated experimentally using hot wire anemometry. The combined effects of transverse curvature as well as low Reynolds number on the mean and turbulent flow quantities are studied. The measurements include the mean velocity, turbulence intensity, skewness and flatness factors in addition to wall shear stress. The results are presented separately for the near wall region and the outer region using dimensionless parameters suitable for each case. They are also compared with the results available in the open literature.The present investigation revealed that the mean velocity in near wall region is similar to other simple turbulent flows (flat plate boundary layer, pipe and channel flows); but it differs in the logarithmic and outer regions. Further, for dimensionless moments of higher orders, such as skewness and flatness factors, the main effects of the low Reynolds number and the transverse curvature are present in the near wall region as well as the outer region.  相似文献   

2.
用平均速度剖面法测量壁湍流摩擦阻力   总被引:10,自引:1,他引:9  
樊星  姜楠 《力学与实践》2005,27(1):28-30
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法.  相似文献   

3.
In this work, we investigate the dynamics of the near wake in a turbulent flow going past a circular cylinder with/without particles at a moderate Reynolds number using a direct numerical simulation method. High-order finite-deference schemes are applied to solve for the bulk fluid properties, and a Lagrangian approach is adopted to track the individual particles. The single-phase flow is analysed and validated using previous experimental data. Two converged states, U- and V-shaped, are observed in the near wake, which are consistent with the experimental results. For the two-phase flow, the addition of smaller particles shortens the length of the recirculation region and causes a V-shaped profile to form behind the circular cylinder. Furthermore, the particles increase the drag force from the circular cylinder and suppress the vortex shedding frequency. An increase in the turbulent statistics in the very near wake and a decrease in the turbulent statistics further downstream are also observed.  相似文献   

4.
This paper describes a direct numerical simulation (DNS) study of turbulent flow over a rectangular trailing edge at a Reynolds number of 1000, based on the freestream quantities and the trailing edge thickness h; the incoming boundary layer displacement thickness δ* is approximately equal to h. The time-dependent inflow boundary condition is provided by a separate turbulent boundary layer simulation which is in good agreement with existing computational and experimental data. The turbulent trailing edge flow simulation is carried out using a parallel multi-block code based on finite difference methods and using a multi-grid Poisson solver. The turbulent flow in the near-wake region of the trailing edge has been studied first for the effects of domain size and grid resolution. Then two simulations with a total of 256 × 512 × 64 (∼ 8.4×106) and 512 × 1024 × 128 (∼ 6.7×107) grid points in the computational domain are carried out to investigate the key flow features. Visualization of the instantaneous flow field is used to investigate the complex fluid dynamics taking place in the near-wake region; of particular importance is the interaction between the large-scale spanwise, or Kármán, vortices and the small-scale quasi-streamwise vortices contained within the inflow boundary layer. Comparisons of turbulence statistics including the mean flow quantities are presented, as well as the pressure distributions over the trailing edge. A spectral analysis applied to the force coefficient in the wall normal direction shows that the main shedding frequency is characterized by a Strouhal number based on h of approximately 0.118. Finally, the turbulence kinetic energy budget is analysed. Received 4 March 1999 and accepted 27 October 2000  相似文献   

5.
In the present paper, the heat transfer characteristics in the thermal entrance region of concentric annuli have been analysed for laminar and turbulent internal flow. Axial heat conduction effects in the fluid have been taken into account. The present paper shows an exact analytical solution for the problem of a piecewise uniform wall heat flux. The obtained analytical solution for the extended Graetz problem is as simple and efficient to compute as the related solution of the parabolic problem. The obtained results show the effect of axial heat conduction in the fluid for a semi-infinite heated section as well as for a finite length of the heated section. It is shown, that for a finite length of the heated section, axial heat conduction effects might be important even for higher Peclet number.  相似文献   

6.
Propagation of turbulence in the plane Couette flow is analysed based on the Nee-Kovasznay model. The flow state is assumed uniform in the main stream direction, and a turbulent region is assumed to propagate spanwise into the laminar region with a constant speed. The speed is obtained to be 0.08U0, where the velocity difference between two boundaries is 2U0. Possible applications of this result are discussed.  相似文献   

7.
The present research aims to investigate the dynamics of a single laboratory irregular wave, characterized by a narrow-banded spectrum and developing on a sloping sand bottom, in intermediate waters up to the surf zone. Experiments focused on the wave shoaling region, in order to examine how the wave is affected by breaking induced turbulence offshore the surf zone. A 3D acoustic Doppler velocimeter was used to measure the three wave velocity components, which were all processed to evaluate the time-averaged vertical distributions of orbital velocities, wave and turbulent Reynolds shear stresses and turbulent intensities. The vertical distributions of the phase-averaged velocity components, turbulent kinetic energy and transport of turbulence were also analysed. The adopted phase-averaging technique was applied to each investigated measurement point. Therefore, the crucial element of the study is that all the analysed values derive directly from real measurements and are not approximated by any kind of interpolation. The study confirmed some dynamic behaviour in the shoaling zone already known in the literature, such as the typical cell-type flow pattern of the mean flow and the necessity to evaluate the turbulent kinetic energy with all the three velocity components, when available, which would otherwise be underestimated. Referring to the time-averaged wave and Reynolds shear stresses, a contribution was added to the open debate on their order of magnitude. The measured wave Reynolds shear stresses were also compared with the results of the model by Zou et al. (J Geophys Res 111:C09032, 2006), confirming the behaviour typical of dissipative breaking waves. The analysis of turbulence transport in the shoaling zone revealed that it is seaward directed close to the surface and landward directed close to the bottom. The results presented in the paper can be extended only to other analogous flow conditions.  相似文献   

8.
A reduced form of Navier–Stokes equations is developed which does not have the usual minimum axial step size restriction. The equations are able to predict accurately turbulent swirling flow in diffusers. An efficient single sweep implicit scheme is developed in conjunction with a variable grid size domain-conforming co-ordinate system. The present scheme indicates good agreement with experimental results for (1) turbulent pipe flow, (2) turbulent diffuser flow, (3) turbulent swirling diffuser flow. The strong coupling between the swirl and the axial velocity profiles outside of the boundary layer region is demonstrated.  相似文献   

9.
In this paper,the formation of the coherent structures in the wall region of aturbulent boundary layer was studied,using the nonlinear theory of the hydrodynamicstability.The spanwise and streamwise wavelengths of the most amplified unstablewave obtained by this study were found in good agreement with the experiments,whichmakes the distinct feature of this study in the present paper,as the basis of thestability analysis,a more rational velocity profile has been used,which is different fromthat of the turbulent mean flow.And also,the new nonlinear theory was used.Theresult is useful in understanding of the quasi-periodicity of the coherent structure in theturbulent boundary layer.  相似文献   

10.
In this paper, direct numerical simulation is performed to investigate a pulsatile flow in a constricted channel to gain physical insights into laminar–turbulent–laminar flow transitions. An in-house computer code is used to conduct numerical simulations based on available high-performance shared memory parallel computing facilities. The Womersley number tested is fixed to 10.5 and the Reynolds number varies from 500 to 2000. The influences of the degree of stenosis and pulsatile conditions on flow transitions and structures are investigated. In the region upstream of the stenosis, the flow pattern is primarily laminar. Immediately after the stenosis, the flow recirculates under an adverse streamwise pressure gradient, and the flow pattern transitions from laminar to turbulent. In the region far downstream of the stenosis, the flow becomes re-laminarised. The physical characteristics of the flow field have been thoroughly analysed in terms of the mean streamwise velocity, turbulence kinetic energy, viscous wall shear stresses, wall pressure and turbulence kinetic energy spectra.  相似文献   

11.
A turbulent channel flow and the flow around a cubic obstacle are calculated by the moving particle semi‐implicit method with the subparticle‐scale turbulent model and a wall model, which is based on the zero equation RANS (Reynolds Averaged Navier‐Stokes). The wall model is useful in practical problems that often involve high Reynolds numbers and wall turbulence, because it is difficult to keep high resolution in the near‐wall region in particle simulation. A turbulent channel flow is calculated by the present method to validate our wall model. The mean velocity distribution agrees with the log‐law velocity profile near the wall. Statistical values are also the same order and tendency as experimental results with emulating viscous layer by the wall model. We also investigated the influence of numerical oscillations on turbulence analysis in using the moving particle semi‐implicit method. Finally, the turbulent flow around a cubic obstacle is calculated by the present method to demonstrate capability of calculating practical turbulent flows. Three characteristic eddies appear in front of, over, and in the back of the cube both in our calculation and the experimental result that was obtained by Martinuzzi and Tropea. Mean velocity and turbulent intensity profiles are predicted in the same order and have similar tendency as the experimental result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This article presents a numerical investigation of turbulent flow in an axisymmetric separated and reattached flow over a longitudinal blunt circular cylinder. The governing equations were discretized by the finite-volume method and SIMPLER method was applied to solve the equations on a staggered grid. The turbulent flow was numerically simulated using the standard k–ε, Abe–Kondoh–Nagano (AKN) and Shear Stress Transport (SST) turbulence models. The comparisons made between numerical results and experimental measurements showed that the SST model is superior to other models in the present calculation.Computations were performed for three different Reynolds numbers of 6000, 10 000 and 20 000 based on the cylinder diameter. To our knowledge, this study represents the first numerical investigation of the present flow configuration. The computational results were validated with the available experimental data of reattachment length, mean velocity distribution and wall static pressure coefficient in the turbulent blunt circular cylinder flows. Further, other characteristics of the flow, such as turbulent kinetic energy, pressure, streamlines, and the velocity vectors are discussed.The results show that the main characteristics of the turbulence flow in the separation region, such as reattachment length or velocity profiles, are nearly independent of the Reynolds number. The obtained results showed that a secondary separation bubble may appear in the main separation bubble near the leading edge. Furthermore, it was found that the turbulent kinetic energy has a large effect on the formation of the secondary bubble.  相似文献   

13.
In the present work, turbulent flow in the annulus of a counter-rotating Taylor-Couette (CRTC) system is studied using large-eddy simulation. The numerical methodology employed is validated, for both the mean and second-order statistics, with the direct numerical simulation (DNS) data available in the literature, for a range of Reynolds numbers from 500 to 4000. Thereafter, turbulent flow occurring in this system at Reynolds numbers of 8000 and 16000 are studied, and the results obtained are analyzed using mean and second-order statistics, vortical structures, velocity vector plots and power energy spectra. Further, the spatio-temporal variation of azimuthal velocity, extracted near the inner cylinder, shows the existence of herringbone like patterns similar to that observed in the previous studies. The effect of eccentricity of the inner cylinder with respect to the outer cylinder is studied, on the turbulent flow in the CRTC system, for two different eccentricity ratios of 0.2 and 0.5 and for two different Reynolds numbers of 1500 and 4000. The results of the eccentric CRTC are analyzed using contours of pressure, mean and second-order statistics, velocity vectors, vortical structures, and turbulence anisotropy maps. It is observed from the eccentric CRTC simulations that the smaller-gap region seems to contain higher amplitude fluctuations and more vortical structures when compared with the larger-gap region. The mean turbulent kinetic energy contours do not change qualitatively with the Reynolds number, however, quantitatively a higher turbulent kinetic energy is observed in the higher Reynolds number case of 4000.  相似文献   

14.
The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remai  相似文献   

15.
We present the results of a Direct Numerical Simulation of a particle-laden spatially developing turbulent boundary layer up to Re θ ?=?2500. Two main features differentiate the behavior of inertial particles in a zero-pressure-gradient turbulent boundary layer from the more commonly studied case of a parallel channel flow. The first is the variation along the streamwise direction of the local dimensionless parameters defining the fluid-particle interactions. The second is the coexistence of an irrotational free-stream and a near-wall rotational turbulent flow. As concerns the first issue, an inner and an outer Stokes number can be defined using inner and outer flow units. The inner Stokes number governs the near-wall behavior similarly to the case of channel flow. To understand the effect of a laminar-turbulent interface, we examine the behavior of particles initially released in the free stream and show that they present a distinct behavior with respect to those directly injected inside the boundary layer. A region of minimum concentration occurs inside the turbulent boundary layer at about one displacement thickness from the wall. Its formation is due to the competition between two transport mechanisms: a relatively slow turbulent diffusion towards the buffer layer and a fast turbophoretic drift towards the wall.  相似文献   

16.
In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data.  相似文献   

17.
In the current work, we present the development and application of an embedded large-eddy simulation (LES) - Reynolds-averaged Navier Stokes (RANS) solver. The novelty of the present work lies in fully embedding the LES region inside a global RANS region through an explicit coupling at the arbitrary mesh interfaces, exchanging flow and turbulence quantities. In particular, a digital filter method (DFM) extracting mean flow, turbulent kinetic energy and Reynolds stress profiles from the RANS region is used to provide meaningful turbulent fluctuations to the LES region. The framework is developed in the open-source computational fluid dynamics software OpenFOAM. The embedding approach is developed and validated by simulating a spatially developing turbulent channel flow. Thereafter, flow over a surface mounted spanwise-periodic vertical fence is simulated to demonstrate the importance of the DFM and the effect of the location of the RANS-LES interface. Mean and second-order statistics are compared with direct numerical simulation (DNS) data from the literature. Results indicate that feeding synthetic turbulence at the LES interface is essential to achieve good agreement for the mean flow quantities. However, in order to obtain a good match for the Reynolds stresses, the LES interface needs to be placed sufficiently far upstream, which in the present case was six spoiler heights before the fence. Further, a realistic spoiler configuration with finite-width in the spanwise direction and inclined at 30 degrees was simulated using the embedding approach. As opposed to the vertical fence case this is a genuinely (statistically) three-dimensional case and a very good match with mean and second-order statistics was obtained with the experimental data. Finally, in order to test the present solver for high sub-sonic speed flows the flow over an open cavity was simulated. A good match with reference data is obtained for mean and turbulence profile comparisons. Tones in the pressure spectra were predicted reasonably well and an overall sound pressure level with a maximum deviation of 2.6 d B was obtained with the present solver when compared with the experimental data.  相似文献   

18.
Large eddy simulation (LES) is combined with the Reynolds-averaged Navier–Stokes (RANS) equation in a turbulent channel-flow calculation. A one-equation subgrid-scale model is solved in a three-dimensional grid in the near-wall region whereas the standard k–ε model is solved in a one-dimensional grid in the outer region away from the wall. The two grid systems are overlapped to connect the two models smoothly. A turbulent channel flow is calculated at Reynolds numbers higher than typical LES and several statistical quantities are examined. The mean velocity profile is in good agreement with the logarithmic law. The profile of the turbulent kinetic energy in the near-wall region is smoothly connected with that of the turbulent energy for the k–ε model in the outer region. Turbulence statistics show that the solution in the near-wall region is as accurate as a usual LES. The present approach is different from wall modeling in LES that uses a RANS model near the wall. The former is not as efficient as the latter for calculating high-Reynolds-number flows. Nevertheless, the present method of combining the two models is expected to pave the way for constructing a unified turbulence model that is useful for many purposes including wall modeling. Received 11 June 1999 and accepted 15 December 2000  相似文献   

19.
A fully-developed turbulent pipe flow is allowed to pass through a rotating pipe section, whose axis of rotation coincides with the pipe axis. At the exit end of the rotating section, the flow passes into a stationary pipe. As a result of the relaxation of surface rotation, the turbulent flow near the pipe wall is affected by extra turbulence production created by the large circumferential shear strain set up by the rapid decrease of the rotational velocity to zero at the wall. However, the flow in the most part of the pipe is absent of this extra turbulence production because the circumferential strain is zero as a result of the solid-body rotation imparted to the flow by the rotating pipe section. The combined effect of these two phenomena on the flow is investigated in detail using hot-wire anemometry techniques. Both mean and turbulence fields are measured, together with the wall shear and the turbulent burst behavior at the wall. A number of experiments at different rotational speeds are carried out. Therefore, the effects of rotation on the behavior of wall shear, turbulent burst at the wall, turbulence production and the near-wall flow can be documented and analysed in detail.  相似文献   

20.
Vorticity stretching in wall-bounded turbulent and transitional flows has been investigated by means of a new diagnostic measure, denoted by Γ, designed to pick up regions with large amounts of vorticity stretching. It is based on the maximum vorticity stretching component in every spatial point, thus yielding a three-dimensional scalar field. The measure was applied in four different flows with increasing complexity: (a) the near-wall cycle in an asymptotic suction boundary layer (ASBL), (b) K-type transition in a plane channel flow, (c) fully turbulent channel flow at Re τ = 180 and (d) a complex turbulent three-dimensional separated flow. Instantaneous data show that the coherent structures associated with intense vorticity stretching in all four cases have the shape of flat ‘pancake’ structures in the vicinity of high-speed streaks, here denoted ‘h-type’ events. The other event found is of ‘l-type’, present on top of an unstable low-speed streak. These events (l-type) are further thought to be associated with the exponential growth of streamwise vorticity in the turbulent near-wall cycle. It was found that the largest occurrence of vorticity stretching in the fully turbulent wall-bounded flows is present at a wall-normal distance of y +?=?6.5, i.e. in the transition between the viscous sublayer and buffer layer. The associated structures have a streamwise length of ~200–300 wall units. In K-type transition, the Γ-measure accurately locates the regions of interest, in particular the formation of high-speed streaks near the wall (h-type) and the appearance of the hairpin vortex (l-type). In the turbulent separated flow, the structures containing large amounts of vorticity stretching increase in size and magnitude in the shear layer upstream of the separation bubble but vanish in the backflow region itself. Overall, the measure proved to be useful in showing growing instabilities before they develop into structures, highlighting the mechanisms creating high shear region on a wall and showing turbulence creation associated with instantaneous separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号