首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The present review surveys the results of X-ray diffraction studies of large stoichiometric transition metal clusters containing from 20 to 145 atoms in metal cores surrounded by ligand shells (72 compounds). Structures of such clusters have fragments of close packings (face-centered cubic (f.c.c.), hexagonal close (h.c.p.), and body-centered cubic (b.c.c.) packings) characteristic of crystalline bulk metals as well as mixed packings (f.c.c./h.c.p.), local close packings with pentagonal symmetry, and strongly distorted amorphous packings. The observed packing types, their distortions, and the relationship between the atomic structures of metal cores and the atomic radial distribution functions (RDF) are discussed. The structural principles established for the large clusters are applied to analysis of the experimental RDF for metal nanoparticles determined by X-ray diffraction and EXAFS spectroscopy.  相似文献   

3.
A new experiment for measuring the reactivity of neutral metal clusters is presented. A low pressure reaction cell is used to measure the sticking ofO 2 andD 2 gas on small transition metal clusters ofCu, Fe, Co andNi. The experiment yields absolute values for the sticking, at a controlled number of cluster/gas collisions, facilitating comparison with theoretical calculations and other experiments. The most striking result of these preliminary measurements is the difference between oxygen sticking onCo N and onCu N , with the sticking onCu N showing a clear correlation to the electronic shell model, while the sticking onCo N only exhibits a sharp increase with size, reaching sticking probability=1.0 forN>25.  相似文献   

4.
Laser ablation of a variety of quite different precursors has been shown to generate gas-phase clusters, which can be immediately characterised using a mass spectrometer. Such experiments provide access to a huge range of species inaccessible by more conventional preparative means. Metal oxides, phosphides and chalcogenides, metal carbonyl clusters and even giant keplerate spheres have been shown to aggregate in the gas phase to form high-nuclearity clusters.  相似文献   

5.
Ionization potentials (IPs) or electron affinities (EAs) for transition metal clusters are an important property that can be used to identify and differentiate between clusters. Accurate calculation of these values is therefore vital. Previous attempts using a variety of DFT models have correctly predicted trends, but have relied on the use of scaling factors to compare to experimental IPs. In this paper, we introduce a new density functional (BFW) that is explicitly designed to yield accurate, absolute IPs for transition metal clusters. This paper presents the numerical results for a selection of transition metal clusters and their carbides, nitrides, and oxides for which experimental IPs are known. When tested on transition metal clusters, the BFW functional is found to be significantly more accurate than B3LYP and B3PW91.  相似文献   

6.
J. Nicola Nicholls 《Polyhedron》1984,3(12):1307-1319
The class of transition metal cluster compounds which contain individual main group heteroatoms is surveyed. Hydrido-clusters and clusters containing group IV, V, VI and VII atoms are dealt with in turn with reference to their synthesis, structure and reactivity.  相似文献   

7.
Transition metal clusters have been subject of experimental and theoretical interest due to their catalytic activity, as well as their unusual physical properties. Semi-empirical extended Hückel molecular orbital calculations are presented for a series of small metal clusters with nuclearity ranging from 3 to 6. Naked and carbonylated clusters of Fe, Ru, and Os are studied. The charge transfer between ligands shell and metal core is found to be a function of nuclearity, CO coordination and the chemical species forming the bare cluster. The observed magnetic properties of these systems are discussed in terms of their electronic structure and CO-metal charge transfer.  相似文献   

8.
Designed synthesis for some transition metal clusters involving bridging-sulfido ligands is reviewed. The basic concept with the use of reactive fragments as building blocks is described. It is shown that the sulfido ligands with lone-pair electrons and the unsaturated coordination sites play important roles in this rational synthesis. The relationship between the metallic coordination types of the sulfido ligands and their assembling activity in the compounds is summarized. Examples of the six kinds of unit construction with reactive fragments as building blocks are shown, indicating clearly that the unit construction is a reasonable way in the synthesis of transition metal clusters involving bridging sulfido ligands. Finally, the potential application of the unit construction schemes in the synthesis of transition metal clusters involving other bridging ligands is presented.  相似文献   

9.
Results of molecular dynamics simulation studies of structural and dynamical properties of 12-, 13-, and 14-atom transition metal clusters are presented. The calculations are carried out using a Gupta-like potential expressed in reduced units. The transformation to absolute units involves two size-dependent parameters which effectively convert the potential into a size-dependent one. The minimum energy geometries of the clusters are obtained through the technique of simulated thermal quenching. A melting-like transition is observed as the energy of the clusters is increased. A novel element of the transition is that it may involve a premelting state.  相似文献   

10.
11.
Electron beam induced changes in maximal valence transition metal oxides V(2)O(5), M(o)O(3) and TiO(2) (anatase) were studied by means of electron energy-loss spectroscopy and electron diffraction in transmission electron microscopy. For V(2)O(5), the observed chemical shifts of the L-edge reveal the reduction of V(5+) to V(2+). The structure changes from orthorhombic V(2)O(5) to cubic VO. MoO(3) can be reduced to a phase with an oxidation state less than that in MoO(2). No notable structural or electronic change in TiO(2) (anatase) is observed. The different behaviours of the studied oxides under an electron beam are discussed with respect to bonding energy and lattice structure.  相似文献   

12.
The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10<N<500) show that the paramagnetic alkali clusters always have a non-deflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossings which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases.  相似文献   

13.
A systematic theoretic study on clusters containing edge-bridged octahedral metal units [Nb6Cl12] n (n?=?2, 3, or 4) and a large variety of ligands has been performed. The benchmark results on the [Nb6Cl 12 i ] n+ and [Nb6Cl 12 i Cl 6 a ] n (n?=?2, 3 or 4) cluster units demonstrated the reliability of GGA PBE functional in combination with ZORA TZP basis set for the Nb-containing coordination compounds. The geometrical, electronic, and vibrational properties of large variety of substituted Nb6Cl 12 i Y 6 a clusters have been provided. One- and two-dimensional structures with a [Nb6Cl 12 i (Bipyr) x Cl 6?x a ] (x?=?2 and 4) building blocks have been proposed as good and stable candidates for new coordination polydimensional materials.  相似文献   

14.
The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.  相似文献   

15.
The electronic spectra of the octahedral clusters TiF3?6, CrF3?6, MnF2?6, NiF2?6, and NiF4?6 are calculated using the multiple-scattering model with statistical exchange. The agreement is satisfactory, indicating that this simple method can be used for detailed investigations of the electronic structure of transition metal complexes.  相似文献   

16.
Summary A series of transition metal complexes with phenyl-2-picolylketone-thiosemicarbazone, LH, of the general formula [ML2]ClnmH2O, (M=Cr3+, Mn2+, Fe2+, Rh3+, Ir3+ or Ru3+; n=0 or 1 and m=1,2 or 3) have been prepared and characterized. Magnetic and spectral (electronic and vibrational) data are commensurate with an octahedral ligand field for all complexes. The variable temperature magnetic moment shows that the iron(II) complex exists in a temperature-dependent high-spinlow-spin equilibrium. The far i.r. spectra show that the strength of the M–S bond follows the order: Mn2+ 2+3+3+3+3+. The various ligand field parameters, Dq, B' and are calculated.  相似文献   

17.
The synthesis and the structure of the new potentially heptadentate ligand 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene (H5L) is described. The reaction in pyridine or DMF of this ligand with various M(AcO)2 salts (M = NiII, CoII, MnII) leads to very different products depending on the metal. Thus, the dinuclear complexes [M2(H3L)2(py)4] (M = NiII, 1; CoII, 2) or the linear zigzag tetranuclear clusters [Mn4(H2L)2(AcO)2(py)5] (3) and [Mn4(H2L)2(AcO)2(dmf)4] (4) have been synthesized and characterized crystallographically. Slow oxidation of complex 3 leads to the formation of the novel mixed-valence linear complex [Mn3(HL)2(py)6] (5), displaying an unprecedented asymmetric MnIIIMnIIIMnII topology. The coordination geometry of complexes 1 to 5 has been analyzed and discussed by means of continuous shape measures. Magnetic measurements of 3 and 5 demonstrate that the metals within these complexes weakly interact magnetically with coupling constants of J1 = -1.13 cm-1 and J2 = -0.43 cm-1 (S = 0) for complex 3 and J1 = -5.4 cm-1 and J2 = -0.4 cm-1 (S = 5/2) for complex 5 (using the H = -Sigma2JijSiSj convention). These results are consistent with X-band EPR measurements on these compounds.  相似文献   

18.
19.
The electronic structure and magnetism of 13 atom clusters of ruthenium, rhodium and palladium having face centered cubic(fcc) geometry has been studied using a Gaussian orbital basis and the local spin density approximation. Calculations were done for the lattice spacings relevant to the bulk crystal lattice. Using the fixed moment states as input potentials, as many as 3 self-consistent states were obtained for these clusters. The 3 converged states of Rh13 cluster is found to have magnetic moments of 0.69 μB , 1.00 μB and 1.46 μB . Out of these states, 0.69 μB moment state is found to be the ground state. But the total energy difference between the 0.69 μB and 1.00 μB state is very small. The 1.46 μB moment state coincides with the state reported previously by other authors which was obtained using the discrete variational method. The experimentally observed moment was around 0.47 μB . Our calculated moment is closer to the experimentally observed moment than the previously reported moment, but is still a bit larger. Ru13 cluster is also found to have large moments, and 3 self-consistent states are also obtained for this cluster. The 3 magnetic moments of the Ru13 cluster are 0.46 μB , 0.62 μB and 1.08 μB . Out of these states, 0.62 μB moment state is found to be the ground state. For the Pd13 cluster, in addition to the nonmagnetic state previously reported, a state with magnetic moment of 0.46 μB is also found to exist indicating possible magnetism in cluster phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号