首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在雷诺数Re=200的情况,利用Maxwell方程直接数值计算表面包覆电极与磁极圆柱体产生的电磁力分布,将其加入到动量方程中,在各种电磁力作用参数和电磁极宽度的组合下,对表面覆盖电磁极圆柱体在弱电解质中的绕流场结构及其升阻力特性进行了数值模拟与分析.结果表明,当电磁极宽度较小时,圆柱体绕流场的分离点越容易接近后驻点,而电磁力对总阻力的影响并不明显,但对压差和摩擦阻力均有明显影响.当电磁极宽度较大时,圆柱体尾部区域越容易产生射流现象,而且总阻力随电磁力作用参数和电磁极宽度增大而减小.在电磁力尚不足以完全抑制周期性涡脱落的情况下,升力幅值随电磁力作用参数增大而减小,但随电磁极宽度则先减小后略有增加,升力脉动频率则均随电磁力作用参数和电磁极宽度增大而增加.研究表明,电磁力可以有效地改善圆柱体绕流场结构,达到减小圆柱体阻力并抑制其脉动升力之目的,因此是圆柱型结构的一种有效流动控制手段.  相似文献   

2.
边宇虹  赵海涛 《力学季刊》2015,36(4):618-626
研究了磁场环境中受机械载荷作用的导电圆柱薄壳的热磁弹性问题.首先,根据电动力学方程和广义Ohm定律,得到了导电薄壳电流密度的分布,考虑到Joule热效应及热平衡方程,得到了导电薄壳的温度分布.其次,通过几何方程、物理方程、运动方程和电动力学方程导出了导电薄壳在机械场、电磁场以及温度场作用下的基本方程.最后,采用差分法及准线性化方法,得到了可以应用离散正交法求解的准线性微分方程组.对于导电圆柱薄壳,得到了Lorentz力表达式,并且推导了温度场积分特征值.讨论了导电圆柱薄壳应力、温度及变形随外加电磁参量的变化规律,并通过实例证实了可以通过改变电、磁、力场的参数来实现对薄壳的应力、应变、温度的控制.  相似文献   

3.
Electronic transport properties can be influenced by the applied electromagnetic fields in conductive materials. The change of the electron distribution function evoked by outfields obeys the Boltzmann equation. In this paper, a general law of heat conduction considering the non-uniform electromagnetic effect is developed from the Boltzmann equation. An analysis of the equation leads to the result that the electric field gradient and the magnetic gradient in the conductive material are responsible for the influences of electromagnetic fields on the heat conduction process. A physical model is established and finite element numerical simulation reveals that heat conduction can be increased or delayed by the different directions of the electric field gradient, and the existence of the magnetic gradient always hinders heat conduction.  相似文献   

4.
边宇虹  游群 《力学季刊》2020,41(4):760-770
基于几何方程、物理方程、运动方程和电动力学方程,建立了二维导电薄柱壳热磁弹性基本方程.考虑到Joule热效应,引入热平衡方程及广义Ohm定律,得出导电薄柱壳的温度场.利用变量代换方法,整理成具有10个基本未知量的标准型方程组.采用差分法和准线性化方法,给出准线性微分方程组.对于二维导电薄柱壳,导出了Lorentz力表达式、温度场积分特征值.通过实例计算,得到了二维导电薄柱壳应力、位移、温度随外加电磁参量的变化规律.研究结果可为二维导电薄壳热磁弹性问题研究提供理论参考.  相似文献   

5.
The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is focused in the wall-boundary layers, and a 2-magnet configuration which creates a centrally located intensive swirling motion. For both configurations the intensity of the Lorentz force could be varied by variation of the electrode DC current between 0.5 and 10 A.A comparative assessment of measured (PIV) and numerically calculated (LES with electromagnetically extended subgrid closure) velocity fields showed good agreement for both configurations. It is demonstrated that the newly designed setup can be used for fundamental studies of the interactions between fluid flow, turbulence and electromagnetic fields and provide detailed insights into the underlying physics of these interactions. This in turn can be used to optimise magnetic control of flow, turbulence and heat transfer in various configurations of practical relevance.  相似文献   

6.
Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic–plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor–workpiece system within a realistic electromagnetic forming process.  相似文献   

7.
贾虎  张瑞  黎棚武 《力学学报》2021,53(8):2214-2224
离子液体是一类可调控、多功能的绿色环保材料, 具有良好的电磁场响应, 有望应用于调控水驱油路径. 在分析离子液体在毛细管中电磁场响应机理的基础上, 建立了电磁场?渗流场耦合作用下离子液体多孔介质流动模型. 通过理论推导与数值分析发现: 电磁场?渗流场耦合作用下毛细管流量大小主要由离子液体电导率与黏度的比值(内因)、电磁场强度与压力梯度(外因)两方面决定; 电磁场产生的洛伦兹力对离子液体施加一个电磁驱动压强, 形成一个类似压力梯度的电磁驱动等效压力梯度, 从而改变离子液体的流量, 当电磁场强度为2.0 × 104 V/m·T时, 电磁场在电导率为0.5 S/m的离子液体上可形成10 kPa/m电磁驱动等效压力梯度. 通过调整电磁场方向即可控制离子液体在多孔介质中的流动方向, 解决常规注水利用压力差难以控制流动路径的难题, 为离子液体智能驱油提供理论依据, 且电磁场产生的热效应会影响离子液体的流动能力及潜在驱油效率.   相似文献   

8.
We conducted a large eddy simulation (LES) of a locally applied electromagnetic control of turbulent thermal convection of an electrically conductive fluid (electrolyte solution) inside of a slender enclosure. Generic configurations, consisting of two or three magnets of opposite polarities located below the lower wall, and two oppositely charged electrodes along the side walls, are considered. The neutral situation (pure thermal convection) is selected to be in turbulent regime at Ra = 107, Pr = 7. A magnetically extended Smagorinsky type model for the subgrid turbulent stresses and a simple-gradient diffusion model for the subgrid turbulent heat fluxes are used. Different intensities of applied DC current through electrodes are imposed. The effects of the resulting Lorentz force on flow, turbulence reorganisation and wall-heat transfer are analysed. It is demonstrated that significant flow and turbulence structure reorganisation takes place in the proximity of the lower horizontal wall and in the central parts of the enclosure—even for weak DC current of I = 1 A. Significant turbulence increase, generated by the elevated electromagnetic mixing, produced significant enhancements of the wall-heat transfer—up to 70% for the 2-magnet configuration.  相似文献   

9.
In this study, we proposed an analytical solution for eddy currents as well as electromagnetic forces of a conductive circular plate in a time varying magnetic field. Specifically, an analytical series solution for eddy currents in a circular plate subjected to an axisymmetrie time varying magnetic field has been proposed based on the T-method that has been widely used in the eddy current analysis of conductive and superconductive structures. Accordingly, the dynamic response, the dynamic instability and the magnetic damping of a circular plate in a transverse transient magnetic field as well as a stationary in-plane magnetic field have also been obtained. The analytical series solution proposed in this work as well as the subsequent numerical analysis not only confirmed the emergence of dynamic instability of a circular plate in a strong transverse magnetic field, but also demonstrated the existence of magneto-damping of a circular conductive plate in an in-plane magnetic field. The method developed in this paper provides a potential new possible way by which the analysis of the electromagnetic coupling problems of conductive structures can be simplified.  相似文献   

10.
A technique is proposed for mathematical and numerical modeling of thermomechanical processes in electrically conductive bodies subjected to an external electromagnetic field. The initial relations for the determination of the electromagnetic field are the Maxwell equations. The stress and strain states of the body are described using the equations of nonisothermal elastoplasticity. The model takes into account the coupling of the electromagnetic and thermal fields. All physical and mechanical parameters of the material depend on temperature. The process of high-temperature induction treatment of a ferromagnetic cylinder is considered as an example __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 13–25, December 2005.  相似文献   

11.
In the technology of oil recovery the oil production rate can be increased by generation of a vertical sand-filld conductive fracture on the wall of the well. Oil diffuses through the conductive fracture to the well. In this paper the seepage flow and isothermal deformation fields in both the formation and fracture and the oil production rate at the well are studied by modelling the formation as an infinite poroelastic medium saturated with a one-phase compressible fluid. The fracture is treated as a one-dimensional poroelastic medium. Darcy flows are considered in both the formation and fracture. The plane strain condition is imposed. Our solution is obtained numerically by a finite element method based on a variational principle. The accuracy of the analysis is studied by comparison of the numerical solutions of some problems with their analytical solutions. Since we are dealing with the transient flow problem of an infinite region, an extrapolation technique is employed to find the finite element solution. The production rate of a well with the conductive fracture is compared with that of a well without the conductive fracture.  相似文献   

12.
导电薄板内电流密度分布与反平面剪切的比拟   总被引:1,自引:0,他引:1  
定量分析电流密度在含裂纹载流薄板内的分布是当前利用电流热效应止裂技术中一个首先要解决的问题.由于裂纹的存在,电流密度在裂尖形成带奇异性分布的高度密集.现有的分析方法往往比较复杂或局限于特殊布置形式的裂纹.通过电流密度分布与弹性力学里反平面剪切问题的比拟,把分析含裂纹载流薄板内电流密度的分布等效于考虑相应的III型裂纹问题,并比照III型裂纹的应力强度因子来定义电流密度因子.而对于裂纹问题的处理可采用分布位错法这一断裂力学里便利有效的分析手段.由给出的算例可见,所提出的比拟解法可以方便精确地求解电流密度在裂尖附近的奇异分布,并有助于对这一奇异性在概念上的直观理解.  相似文献   

13.
考虑超材料胞元间电磁耦合影响的五层模型   总被引:1,自引:0,他引:1  
研究了胞元间电磁耦合对多周期超材料结构散射参数的影响,阐明了电磁耦合影响的关键因素是超材料结构的均匀性。基于中间胞层的非均匀性构建了预测复杂胞元超材料结构散射参数的五层模型,其核心工作是对边胞、中间胞和核心胞的电磁本构参数实施剥洋葱式的解耦推算;数值仿真算例验证了五层模型的预测准确度及其高效性能。  相似文献   

14.
A problem of magnetoelasticity for a ring plate of variable stiffness is solved. A governing system of nonlinear differential equations is derived. It describes the stress–strain state of flexible conductive plates in nonstationary mechanical and electromagnetic fields. A numerical example is given. The stress state of a flexible plate of variable stiffness in a magnetic field is analyzed  相似文献   

15.
流体边界层上电磁力的控制效应研究   总被引:13,自引:1,他引:13  
利用作用于流体边界层上的电磁体积力改变流体边界层的结构,研究电磁力对流场的控制 作用效果. 电极与磁极交替分布的电磁场激活板包覆在圆柱体表面置于流动的电解质溶液 中,产生的电磁力沿圆柱体表面分布,可以改变流体边界层的结构,从而实现对流场的控制. 用电磁屏蔽和时域控制的方法调整电磁力的时空分布参数,圆柱绕流分离点可以在前驻点和 后驻点之间变动,产生不同的控制效果. 流体边界层上的电磁力能连续控制圆柱绕流、尾流 涡街的形态. 正向电磁力具有较好的消涡、减震和减阻控制效应. 反向电磁力具有明显的增 涡控制效应,具有较强的制动控制效应,此时圆柱体表面涡量分布的对称性和稳定性被破坏.  相似文献   

16.
17.
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.  相似文献   

18.
A general method is presented for analyzing two-phase flow in magnetohydrodynamic generators. The method utilizes the time and flow-area-averaged kinematic, dynamic and electromagnetic quantities, and develops prediction capabilities of the generator performance parameters in terms of two fundamental physical parameters. These parameters are the flow and the electrical conductivity-flow distribution coefficients. The flow coefficient takes into consideration flow and relative velocity distribution, and the electrical conductivity-flow coefficient expresses the distribution of electrical conductivity with flow at any cross-sectional area of the generator duct.

The flow and electrical conductivity-fiow distribution coefficients depend primarily on the two-phase flow regime and on the ratio of volumetric flow rates of the two phases in the duct. This conclusion has been established by examining the experimental data. Examination of the experimental data has also revealed the values of these coefficients for bubbly and churn-turbulent flow regimes for the wide range of ratios of volumetric flow rates. The analysis develops expressions for two-phase MHD generator load factor, electromagnetic pressure distribution across and along the generator channel, the distribution of the electromagnetic fields and interaction parameter.  相似文献   


19.
翼型绕流的电磁力控制   总被引:3,自引:0,他引:3  
将表面包覆电磁激活板的翼型,按一定的攻角,置于流动的弱电介质溶液中,电磁激活板可产生作用于流体的切向电磁力(Lorentz力),从而改变流体边界层的结构. 在转动水槽中,对翼型绕流及电磁力控制下的绕流形态进行了实验研究. 结果表明,未加电磁力时,前缘涡的脱落点是不确定的,与流场具体条件有关,而后缘涡仅在尖角处脱落. 前缘涡与后缘涡相互影响,并周期性的脱体,在尾部形成涡街. 施加电磁力后,当力的方向与流动方向相同时,可以在一定程度上抑制分离,消除涡街,其效果与减小攻角类似. 加反向电磁力时,则相当于加大攻角,在翼型体的背风面形成涡街.   相似文献   

20.
Horizontal oil-water two-phase flows are frequently encountered in many industrial processes but the understanding of the dynamic behavior underlying the different flow patterns is still a challenge. In this study, we first conduct experiments of horizontal oil-water flows in a small diameter pipe, and collect the fluctuation signals from conductance probes. The multi-scale power-law correlations of the oil-water flow structures are investigated using detrended fluctuation analysis (DFA) based on the magnitude and sign decomposition of the raw signals. The analysis reveals the scaling behavior of different flow structures; five conductive flow patterns are indentified based on the magnitude and sign scaling exponents at different time scales. In addition, the transfer entropy (TE) in a state space is used to study the information transferring characteristics of the oil-water mixture flowing past a conductance cross-correlation velocity probe. The results of TE indicate that the transferring information depends on the flow conditions and can be used to show changes in the flow patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号