首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the evaluation of cytotoxicity of a new type of engineered nanomaterials, FePt@CoS(2) yolk-shell nanocrystals, synthesized by the mechanism of the Kirkendall effect when FePt nanoparticles serve as the seeds. The cytotoxicity of FePt@CoS(2) yolk-shell nanocrystals, evaluated by MTT assay, shows a much lower IC(50) (35.5 +/- 4.7 ng of Pt/mL for HeLa cell) than that of cisplatin (230 ng of Pt/mL). In the control experiment, cysteine-modified FePt nanoparticles exhibit IC50 at 12.0 +/- 0.9 microg of Pt/mL. Transmission electron microscopy confirms the cellular uptake of FePt@CoS(2) nanocrystals, and the magnetic properties analysis (SQUID) proves the release of FePt nanoparticles from the yolk-shell nanostructures after cellular uptake. These results are significant because almost none of the platinum-based complexes produced for clinical trials in the past 3 decades have shown higher activity than that of the parent drug, cisplatin. The exceptionally high toxicity of FePt@CoS(2) yolk-shell nanocrystals (about 7 times higher than that of cisplatin in terms of Pt) may lead to a new design of an anticancer nanomedicine.  相似文献   

2.
Using an improved hydrolysis method of inorganic salts assisted with water-bath incubation, ultrasmall water-soluble metal-iron oxide nanoparticles (including Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles) were synthesized in aqueous solutions, which were used as T(1)-weighted contrast agents for magnetic resonance imaging (MRI). The morphology, structure, MRI relaxation properties and cytotoxicity of the as-prepared metal-iron oxide nanoparticles were characterized, respectively. The results showed that the average sizes of nanoparticles were about 4 nm, 4 nm and 5 nm for Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles, respectively. Moreover, the nanoparticles have good water dispersibility and low cytotoxicity. The MRI test showed the strong T(1)-weighted, but the weak T(2)-weighted MRI performance of metal-iron oxide nanoparticles. The high T(1)-weighted MRI performance can be attributed to the ultrasmall size of metal-iron oxide nanoparticles. Therefore, the as-prepared metal-iron oxide nanoparticles with good water dispersibility and ultrasmall size can have potential applications as T(1)-weighted contrast agent materials for MRI.  相似文献   

3.
We describe a simple and versatile protocol to prepare water-soluble multifunctional nanostructures by encapsulation of different nanoparticles in shell cross-linked, block copolymer micelles. This method permits simultaneous incorporation of different nanoparticle properties within a nanoscale micellar container. We have demonstrated the co-encapsulation of magnetic (gamma-Fe2O3 and Fe3O4), semiconductor (CdSe/ZnS), and metal (Au) nanoparticles in different combinations to form multicomponent micelles that retain the precursor particles' distinct properties. Because these multifunctional hybrid nanostructures spontaneously assemble from solution by simultaneous desolvation of nanoparticles and amphiphilic block copolymer components, we anticipate that this can be used as a general protocol for preparing multifunctional nanostructures without explicit multimaterial synthesis or surface functionalization of nanoparticles.  相似文献   

4.
This work is directed towards the synthesis of multifunctional nanoparticles composed of Fe(3)O(4)-Au nanocomposite cores and a porous silica shell (Fe(3)O(4)-Au/pSiO(2)), aimed at ensuring the stability, magnetic, and optical properties of magnetic-gold nanocomposite simultaneously. The prepared Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles are characterized by means of TEM, N(2) adsorption-desorption isotherms, FTIR, XRD, UV-vis, and VSM. Meanwhile, as an example of the applications, catalytic activity of the porous silica shell-encapsulated Fe(3)O(4)-Au nanoparticles is investigated by choosing a model reaction, reduction of o-nitroaniline to benzenediamine by NaBH(4). Due to the existence of porous silica shells, the reaction with Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles as a catalyst follows second-order kinetics with the rate constant (k) of about 0.0165 l mol(-1) s(-1), remarkably different from the first-order kinetics with the k of about 0.002 s(-1) for the reduction reaction with the core Fe(3)O(4)-Au nanoparticles as a catalyst.  相似文献   

5.
The selected-control preparation of uniform core-shell and yolk-shell architectures, which combine the multiple functions of a superparamagnetic iron oxide (SPIO) core and europium-doped yttrium oxide (Y(2)O(3):Eu) shell in a single material with tunable fluorescence and magnetic properties, has been successfully achieved by controlling the heat-treatment conditions. Furthermore, the shell thickness and interior cavity of SPIO@Y(2)O(3):Eu core-shell and yolk-shell nanostructures can be precisely tuned. Importantly, as-prepared SPIO@Y(2)O(3):Eu yolk-shell nanocapsules (NCs) modified with amino groups as cancer-cell fluorescence imaging agents are also demonstrated. To the best of our knowledge, this is the first report on the selected-control fabrication of uniform SPIO@Y(2)O(3):Eu core-shell nanoparticles and yolk-shell NCs. The combined magnetic manipulation and optical monitoring of magnetic-fluorescent SPIO@Y(2)O(3):Eu yolk-shell NCs will open up many exciting opportunities in dual imaging for targeted delivery and thermal therapy.  相似文献   

6.
Easy in, easy out: Mass transport through TiO(2) and SiO(2) shells was probed in the liquid phase with IR spectroscopy by detecting carbon monoxide adsorption in Pt@void@TiO(2) yolk-shell and Pt@SiO(2) core-shell nanostructures (see picture; C?green, O?red, Pt?pale red). Adsorption was observed on the surface of Pt nanoparticle cores, and on the inner face of the TiO(2) shells in the yolk-shell case.  相似文献   

7.
Employing dibenzo-24-crown-8-ether (DB24C8) as a phase-transfer catalyst, monodispersed fluorescent lanthanon-doped magnetic FePt:RE (RE=Eu, Dy, and Ce) nanoparticles about 3 nm in size were synthesized through the reduction of H2PtCl6.6H2O, Fe2(C2O4)3.5H2O, and RE(NO3)3 (RE=Eu, Dy, and Ce) by propylene glycol using oleic acid as the stabilizer in the solvent-thermal system. The conversion of the as-synthesized chemically disordered fcc FePt:RE nanoparticles to a chemically ordered L1 0 structure occurred after annealing treatment at 873 K, and was simultaneously accompanied by a coercivity increase. It is interesting that the amorphous formation trend is strengthened in an europium-doped FePt:Eu alloy accompanied by enhancement of the coercive force. Its thermal stability indicated that the addition of europium can inhibit the phase transformation. Moreover, the optical measurement results proved that FePt:Dy alloy nanoparticles have fluorescent properties.  相似文献   

8.
Core-shell nanostructures consisting of FePt magnetic nanoparticles as the core and semiconducting chalcogenides as the shell were synthesized by a series of reactions in a one-pot procedure. Adding Cd(acac)2 as the cadmium precursor to a reaction mixture containing FePt nanoparticles afforded FePt@CdO core-shell intermediates. The subsequent addition of chalcogens yielded FePt@CdX core-shell nanocrystals (where X was S or Se). The reverse sequence of addition, i.e., adding X before Cd, resulted in spongelike nanostructures because the chalcogens readily formed nanowires in the solution. Transmission electron microscopy, energy-dispersive X-ray spectrometry, selected area electron diffraction, fluorescence spectroscopy, and SQUID were used to characterize the nanostructures. These core-shell nanostructures displayed superparamagnetism at room temperature and exhibited fluorescence with quantum yields of 2.3-9.7%. The flexibility in the sequence of addition of reagents, combined with the compatibility of the lattices of the different materials, provides a powerful yet convenient strategy for generating sophisticated, multifunctional nanostructures.  相似文献   

9.
This paper describes a new approach for making face-centered tetragonal (fct) FePt nanoparticles with a diameter of 17 nm and granular films from Pt@Fe2O3 core-shell nanoparticle precursors. The core-shell nanoparticles were converted to fct FePt through a reduction and alloy formation process at enhanced temperatures. The Fe and Pt elemental analysis was conducted on both individual nanoparticles and granular films using energy-dispersive X-ray (EDX) spectroscopy. Our convergent evidence from selected area electron diffraction (SAED), powder X-ray diffraction (PXRD), and EDX analysis indicates that the final products are fct FePt alloys. The fct FePt films have coercivities of 8.0-9.1 kOe at 5 K and 7.0 kOe at 300 K measured by a SQUID magnetometer. These values depend on the conversion temperatures of Pt@Fe2O3 nanoparticles. Unlike the previously synthesized disordered face-centered cubic (fcc) FePt nanoparticles with diameters of 4-6 nm (Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989), the FePt nanoparticles presented in this work not only possess the preferred fct phase but also are in a size range that is expected to be ferromagnetic and have high coercivity, which is important to the practical applications in ultrahigh density data storage media and magnetic nano devices.  相似文献   

10.
The surface of Pd@SiO(2) core-shell nanoparticles (1) was simply modified by the formation of nickel phyllosilicate. The addition of nickel salts formed branched nickel phyllosilicates and generated pores in the silica shells, yielding Pd@SiO(2)-Niphy nanoparticles (Niphy = nickel phyllosilicate; 2, 3). By removal of the silica residue, Pd@Niphy yolk-shell nanoparticles (4) was uniformly obtained. The four distinct nanostructures (1-4) were employed as catalysts for Suzuki coupling reactions with aryl bromide and phenylboronic acid, and the conversion yields were in the order of 1 < 2 < 3 < 4 as the pore volume and surface area of the catalysts increased. The reaction rates were strongly correlated with shell porosity and surface exposure of the metal cores. The chemical inertness of nickel phyllosilicate under the basic conditions rendered the catalysts reusable for more than five times without loss of activity.  相似文献   

11.
A general synthetic strategy for yolk-shell nanocrystal@ZIF-8 nanostructures has been developed. The yolk-shell nanostructures possess the functions of nanoparticle cores, microporous shells, and a cavity in between, which offer great potential in heterogeneous catalysis. The synthetic strategy involved first coating the nanocrystal cores with a layer of Cu(2)O as the sacrificial template and then a layer of polycrystalline ZIF-8. The clean Cu(2)O surface assists in the formation of the ZIF-8 coating layer and is etched off spontaneously and simultaneously during this process. The yolk-shell nanostructures were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and nitrogen adsorption. To study the catalytic behavior, hydrogenations of ethylene, cyclohexene, and cyclooctene as model reactions were carried out over the Pd@ZIF-8 catalysts. The microporous ZIF-8 shell provides excellent molecular-size selectivity. The results show high activity for the ethylene and cyclohexene hydrogenations but not in the cyclooctene hydrogenation. Different activation energies for cyclohexene hydrogenation were obtained for nanostructures with and without the cavity in between the core and the shell. This demonstrates the importance of controlling the cavity because of its influence on the catalysis.  相似文献   

12.
In this study, multifunctional nanoparticles containing thermosensitive polymers grafted onto the surfaces of 6-nm monodisperse Fe(3)O(4) magnetic nanoparticles coated by silica were synthesized using reverse microemulsions and free radical polymerization. The magnetic properties of SiO(2)/Fe(3)O(4) nanoparticles show superparamagnetic behavior. Thermosensitive PNIPAM (poly(N-isopropylacrylamide)) was then grafted onto the surfaces of SiO(2)/Fe(3)O(4) nanoparticles, generating thermosensitive and magnetic properties of nanocomposites. The sizes of fabricated nanoparticles with core-shell structure are controlled at about 30 nm and each nanoparticle contains only one monodisperse Fe(3)O(4) core. For thermosensitivity analysis, the phase transition temperatures of multifunctional nanoparticles measured using DSC was at around 34-36 degrees C. The magnetic characteristics of these multifunctional nanoparticles were also superparamagnetic.  相似文献   

13.
陈秋云  王玲昀  陈浩  王娟  高静 《无机化学学报》2010,26(10):1784-1789
运用油包水微乳液方法制备了二吡啶甲基胺(dpa)及其锰(Ⅱ)和铁(Ⅲ)配合物修饰的Gd-DTPA配合物硅核壳纳米球,其中二吡啶甲基胺锰(Ⅱ)和铁(Ⅲ)配合物修饰的纳米球粒径分别为60和5nm。体外MRI成像研究表明3种纳米球能显著提高肿瘤细胞的磁共振成像效果,具备良好的肿瘤靶向性。生物活性数据显示三价铁配合物修饰的纳米球具备成像和抑制细胞生长的双重功能,而锰配合物修饰的纳米球不能抑制肿瘤细胞的生长,可作为低毒性的肿瘤成像剂。实验结果显示肿瘤靶向性配合物修饰的纳米球可发展成为新型多功能肿瘤靶向性纳米药物。  相似文献   

14.
This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.  相似文献   

15.
A facile, mild, environmentally friendly and reproducible strategy was used to fabricate the multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe(3)O(4)-mesoporous silica yolk-shell nanocapsules for simultaneous fluorescent tracking and magnetically guided small interfering RNA delivery.  相似文献   

16.
Iron-platinum alloy nanoparticles (FePt NPs) are extremely promising candidates for the next generation of contrast agents for magnetic resonance (MR) diagnostic imaging and MR-guided interventions, including hyperthermic ablation of solid cancers. FePt has high Curie temperature, saturation magnetic moment, magneto-crystalline anisotropy, and chemical stability. We describe the synthesis and characterization of a family of biocompatible FePt NPs suitable for biomedical applications, showing and discussing that FePt NPs can exhibit low cytotoxicity. The importance of engineering the interface of strongly magnetic NPs using a coating allowing free aqueous permeation is demonstrated to be an essential parameter in the design of new generations of diagnostic and therapeutic MRI contrast agents. We report effective cell internalization of FePt NPs and demonstrate that they can be used for cellular imaging and in vivo MRI applications. This opens the way for several future applications of FePt NPs, including regenerative medicine and stem cell therapy in addition to enhanced MR diagnostic imaging.  相似文献   

17.
Ultrasonication of toluene solutions of the heteropolynuclear cluster complex, Pt3Fe3(CO)15, in the presence of oleic acid and oleylamine affords surface-capped fcc FePt nanoparticles having an average diameter of ca. 2 nm. Self-assembled arrays of these nanoparticles on oxidized Si wafers undergo a fcc-to-fct phase transition at 775 degrees C to form ferromagnetic FePt nanocrystals ca. 5.8 nm in diameter well dispersed on the Si wafer surface. Room-temperature coercivity measurements of these annealed FePt nanoparticles confirm a high coercivity of ca. 22.3 kOe. Such high coercivity for fct FePt nanoparticles might result from use of a heterpolynuclear complex as a single-source precursor of Fe and Pt neutral atoms or from use of ultrasonication to form fcc FePt nanoparticles under conditions of exceptionally rapid heating. Experiments to determine the critical experimental conditions required to achieve such high room-temperature coercivities in ferromagnetic nanoparticles are underway.  相似文献   

18.
Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent.  相似文献   

19.
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite(denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries(LIBs).The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g~(-1) at a current density of 100 mA g~(-1) and superior cycling performance of 1113 mAh g~(-1) over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductivity and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer.The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.  相似文献   

20.
We demonstrate that the silica shell on nanoparticles formed by a typical St?ber method is inhomogeneous in nature. The outer layer of the shell is chemically more robust than the inner layer, which can be selectively etched by hot water. Methods are developed to "harden" the soft silica shells. These new understandings are exploited to develop versatile and template-free approaches for fabricating sophisticated yolk-shell nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号