首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of coupling between a plane wave acoustic mode and a non-axisymmetric structural mode of a thin walled, circular, cylindrical shell, via the geometrical distortion of the shell, is considered. A theoretical model of response below the acoustic cut-off frequency is used to estimate the vibration level induced in a tube having small circumferential variations of wall thickness, radius and modulus of elasticity. The results have been confirmed experimentally.  相似文献   

2.
A numerical vibroacoustic model that can manage multilayered plates locally covered with damping patches is presented. All the layers can have an on-axis orthotropic viscoelastic behavior. Continuity of displacements and transverse shear stresses at each interface is enforced, which permits to write the entire displacement field in function of the displacements of the--common--first layer, leading to a two-dimensional plate model. The problem is then discretized by Rayleigh-Ritz's method using a trigonometric basis that includes both sine and cosine functions in order to treat various boundary conditions. The excitation can be of mechanical kind (concentrated or distributed forces) or of acoustic kind (plane wave of any incidence, diffuse field, etc.). The model permits to compute different vibroacoustic indicators: the mean square velocity of the plate, the radiation efficiency, and the transmission loss. Comparisons between the present model and numerical results from literature or finite element computations show that the model gives good results in both mechanical and acoustical aspects. Then, a comparison of the effects of different distributions of patches is presented. The role of the surface covering rate is first discussed, followed by a study involving different geometries for the same surface covering rate.  相似文献   

3.
陈达  张超  关威  胡恒山 《应用声学》2019,38(5):801-806
声波测井仪接收到的电信号通常是多个压电片响应的叠加,它主要是由声压还是径向位移响应转化而来,或是两种响应兼有目前未有定论。该文通过实轴积分法和复变函数法计算并对比分析随钻声波测井的声压和径向位移场,发现这两种响应特性有着显著的差异。首先,软地层的偶极随钻测井时,声压信号包含钻铤波和舒尔特波两个波群,而径向位移信号仅有钻铤波波群;其次,单极声源情况下,声压和径向位移信号的钻铤波能量分别集中在钻铤内、外壁,而偶极情况恰好相反,可见,钻铤按照单极情况的分析结果进行刻槽后,高频时的拖尾现象会影响偶极信号中舒尔特波对横波速度的反演。因此,阐明两类信号的差异对横波速度的反演和钻铤波的压制都具有重要意义。  相似文献   

4.
The metre     
A musical wind instrument transforms a constant pressure input from the player's mouth into a fluctuating pressure output in the form of a radiating sound wave. In reed woodwind and brass instruments, this transformation is achieved through a nonlinear coupling between two vibrating systems: the flow control valve formed by the mechanical reed or the lips of the player, and the air column contained by the pipe. Although the basic physics of reed wind instruments was developed by Helmholtz in the nineteenth century, the application of ideas from the modern theory of nonlinear dynamics has led to recent advances in our understanding of some musically important features of wind instrument behaviour. As a first step, the nonlinear aspects of the musical oscillator can be considered to be concentrated in the flow control valve; the air column can be treated as a linear vibrating system, with a set of natural modes of vibration corresponding to the standing waves in the pipe. Recent models based on these assumptions have had reasonable success in predicting the threshold blowing pressure and sounding frequency of a clarinet, as well as explaining at least qualitatively the way in which the timbre of the sound varies with blowing pressure. The situation is more complicated for brass instruments, in which the player's lips provide the flow valve. Experiments using artificial lips have been important in permitting systematic studies of the coupling between lips and air column; the detailed nature of this coupling is still not fully understood. In addition, the assumption of linearity in the air column vibratory system sometimes breaks down for brass instruments. Nonlinear effects in the propagation of high amplitude sound waves can lead to the development of shock waves in trumpets and trombones, with important musical consequences.  相似文献   

5.
Making MRI quieter   总被引:3,自引:0,他引:3  
We have mitigated acoustic noise in a 1.5 T cylindrical MRI scanner equipped with epoxy-potted, shielded gradients. It has been widely assumed that MRI acoustic noise comes overwhelmingly from vibrations of the gradient assembly. However, with vibration-isolated gradients contained in an airtight enclosure, we found the primary sources of acoustic noise to be eddy-current-induced vibrations of metal structures such as the cryostat inner bore and the rf body coil. We have elucidated the relative strengths of source-pathways of acoustic noise and assembled a reduced-acoustic-noise demonstration MRI system. This scanner employed a number of acoustic noise reduction measures including a vacuum enclosure of a vibrationally isolated gradient assembly, a low-eddy-current rf coil and a non-conducting inner bore cryostat. The demonstration scanner reduced, by about 20 dBA, the acoustic noise levels in the patient bore to 85 dBA and below for several typical noisy pulse sequences. The noise level standing near the patient bore is 71 dBA and below. We have applied Statistical Energy Analysis to develop a vibroacoustic model of the MR system. Our model includes vibrational sources and acoustic pathways to predict acoustic noise and provides a good spectral match above 400 Hz to experimentally measured sound levels. This tool enables us to factor acoustics into the design parameters of new MRI systems.  相似文献   

6.
Based on the energy conservation relationship,nonlinear thermo-acoustic effects of Rijke tube including instability range,saturation processes and higher harmonics modes were investigated.With coupling between the external flow and the inner space of a Rijke tube, the acoustic characteristics of self-excited oscillation were simulated.The experimental study was also carried out and the results were compared with those from simulation.The nonlinear factors which distort the acoustic waveform distortion were analyzed.From the results,it is seen that varying size of the nozzle outlet changes the acoustic impedance in the boundary, and leads to reduction of the nonlinear effects.The results show that the modes of self-excited oscillation could be influenced by the position of higher harmonics.In the large amplitude oscillation,the distortion of pressure wave within Rijke tube could be induced by the acoustic losses due to vortices on nozzle.It is found that the waveform distortion could be avoided by the shrinkage of nozzle.  相似文献   

7.
The influence of coupling between exchange spin waves and acoustic waves on the spectrum of magnetoelastic vibrations in planar structures (such as a ferrite film-dielectric substrate structure) is investigated theoretically. A strong magnetoelastic coupling is observed in a narrow spectrum of magnetoacoustic modes that corresponds to the phase matching of the exchange magnetostatic and acoustic modes. An explanation is offered for the experimental results obtained earlier by the authors, according to which the linear excitation of exchange acoustic and dipole exchange acoustic modes occurs in a spectral range corresponding to the resonance magnetoelastic coupling of exchange modes irrespective of the degree of pinning of surface spins in the ferrite film. It is demonstrated that the exchange acoustic and dipole exchange acoustic modes can be excited in films with free surface spins due to a substantial transformation of the structure of normal modes of the magnetization vector and elastic displacements in the range of the phase matching of the exchange spin and acoustic modes.  相似文献   

8.
Cross-sectional pressure distributions, natural acoustic modes, and associated cutoff frequencies are determined for real ear-canal geometries using an asymptotic theory in combination with a numerical method. The technique is particularly well suited to obtain the higher modes, which are trapped near both ends of the ear canal. Results detail the influence of the canal geometry and frequency on the spatial distribution of the pressure. Adult ear-canal geometries are determined near the concha from ear-mold sections using a light microscope interfaced to a video-data-acquisition system. Computed results compare favorably to the exact solutions for circular and square acoustic waveguides. The cutoff frequency of the two adult ear canals studied averaged 20% less than the cutoff frequency of a circular tube of identical cross-sectional area. Inserting a probe microphone into the canal decreases the rate of decay of circumferential nonplanar modes while increasing the rate of decay of radial modes. Relative to the pressure beyond the tube, insertion increases the plane-wave component of the pressure around the tube by a multiplicative factor approximately equal to the square root of the original area divided by the occluded area. Eccentric placement of the probe tube has a relatively small influence on the cutoff frequency. The transition of the pressure distribution at the entrance to a simple plane wave in the core region of the canal is calculated and shown graphically for the actual geometry of two adult subjects.  相似文献   

9.
This paper is devoted to the study of acoustic vibrations induced by a flow upon an air-filled cylindrical tube vertically placed in water. A water pump with adapted piping generates a turbulent flow horizontally canalized in a large laboratory tank (6 m × 4 m × 3 m). The tube is located across this flow and an accelerometer measures vibrations. The signal processing performed on the recorded signals brings out resonance modes of the tube excited by the flow. A theoretical study (tube in air) and complementary experiments (tube in air and in water) are conducted to identify these modes.  相似文献   

10.
It is generally known that surface acoustic waves, or Rayleigh waves, have different mode shapes in infinite plates. To be precise, there are both exponentially decaying and growing components in plates appearing in pairs, representing symmetric and antisymmentric modes in a plate. As the plate thickness increases, the combined modes will approach the Rayleigh mode in a semi-infinite solid, exhibiting surface acoustic wave deformation and velocity. In this study, the two-dimensional theory for surface acoustic waves in finite plates is extended to include the exponentially growing modes in the expansion function. With these extra equations, we study the surface acoustic waves in a plate with different thickness to examine the coupling of the exponentially decaying and growing modes. It is found that for small thickness, the two groups of waves are strongly coupled, showing the significance of including the effect of thickness in analysis. As the thickness increases to certain values, such as more than five wavelengths, the exponentially decaying modes alone will be able to predict vibrations of surface acoustic wave modes accurately, thus simplifying the equations and solutions significantly. Supported by Qianjiang River Fund established by Zhejiang Provincial Government and Ningbo University and administered by Ningbo University and the National Natural Science Foundation of China (Grant No. 10572065)  相似文献   

11.
When the fully-developed turbulent flow in a pipe of circular cross-section is forced to negotiate a 90° mitred bend, flow separation occurs at the inner and outer corners of the bend, with random switching of the separation regions from one side of the plane of symmetry of the bend to the other (as was previously observed by Tunstall and Harvey). The resulting disturbance to the fluctuating pressure field consists of intense non-propagating fluctuations over the region of the inner-wall separation, which near re-attachment have a maximum rms value of about 33% of the undisturbed centre-line dynamic pressure, but are rapidly attenuated with downstream distance from the bend. Beyond about 12 diameters downstream the only remaining disturbance is an acoustic field comprising propagating higher order modes and plane waves, the latter making the larger contribution to the overall mean square pressure. Extensive spectral measurements of the wall pressure field for flow Mach numbers in the range 0·2-0·5 are presented, and regions where higher order modes are detectable are identified. Downstream of the bend, wall pressure spectra generally have two local maxima at frequencies below those at which higher order acoustic modes can propagate. They occur at Strouhal numbers of about 0·4 and 1·6, and turbulent fluctuations at these frequencies in the vicinity of the bend appear to be mainly responsible for the generation of plane acoustic waves. The former Strouhal number does not vary significantly with streamwise position but decreases slightly with increasing flow speed; the latter is somewhat more sensitive to both flow speed and streamwise position. Upstream of the bend wall pressure spectra exhibit only the maximum at a Strouhal number of about 0·4.  相似文献   

12.
Acoustic modes and the coupling characteristics of a rectangular-like cavity with a slight geometrical distortion introduced through a leaning wall are investigated in this paper. A pressure variation index is proposed to quantify the global changes in acoustic modes caused by the inclination of the wall. Effects on the coupling between acoustic modes and structural modes are investigated using coupling coefficients. Numerical results show a simple relationship between the distortion effect and the acoustic wavelength. The effect is most significant when the distortion approaches the half wavelength. Compared with a rectangular enclosure, the existence of the leaning wall gives rise to a much more effective coupling between the structure and the enclosure.  相似文献   

13.
This paper deals with the study of the velocity and the attenuation of an acoustic wave propagating inside a cylindrical elastic tube filled with a viscous liquid. A theory describing the propagation of the axisymmetrical modes in such waveguides is presented, with special attention given to the absorption produced by the viscous mechanisms in the liquid. One of these mechanisms is related to the momentum transfer between the compression and rarefaction regions of a propagating wave. The other viscous mechanism is due to the momentum transport inside the viscous boundary layer, close to the tube wall. Numerical calculations were carried out to investigate the influence of different parameters (frequency, tube radii, viscosity coefficient) on the propagation of acoustic waves.  相似文献   

14.
部分浸没圆柱壳声固耦合计算的半解析法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郭文杰  李天匀  朱翔  屈凯旸 《物理学报》2018,67(8):84302-084302
部分浸没圆柱壳-流场耦合系统的声振分析是一种典型的半空间域内声固耦合问题,其振动及声学计算目前主要依赖于数值方法求解,但无论从检验数值法还是从机理上揭示其声固耦合特性,解析或半解析方法的发展都是不可或缺的.本文提出了一种半解析方法,先将声场坐标系建立在自由液面上,采用正弦三角级数来满足自由液面上的声压释放边界条件;接着基于二维Flügge薄壳理论建立了以圆柱圆心为坐标原点的壳-液耦合系统的控制方程;然后再利用Galerkin法处理声固耦合界面的速度连续条件,推导得到声压幅值与壳体位移幅值之间的关系矩阵并求解该耦合系统的振动和水下声辐射.与有限元软件Comsol进行了耦合系统自由、受迫振动和水下辐射噪声计算结的对比分析,表明本文方法准确可靠.本文的研究为解析求解弹性结构与声场部分耦合的声振问题提供了新的思路.  相似文献   

15.
Thermoelastic and thermoviscous acoustic wave propagation in fluid-filled steel tubes is studied using the exact three-dimensional (3-D) fluid-elastic coupled system equations for the vibration in the n=0 and 1 circumferential modes. Water- and air-filled tubes are examined. The water-filled steel tube shows a strong fluid-elastic coupling effect in the lower frequency range and the air-filled tube shows a strong thermal effect for all frequencies. An 88·9 mm outer diameter tube with 3·05 mm wall thickness is used for the study. Due to the fluid-elastic coupling introduced for air having a specific heat ratio of 1·4 (the solution uncouples when the ratio is 1·0), thermal effects are seen to be very important with the modal attenuation rate being at least 32% underestimated if the thermal effect is not included in the air-steel system. A coincidence phenomenon is accurately found directly from the coupled modes in the fluid-elastic coupled system. When coincidence occurs, the axial modal attenuation rate drops sharply, allowing the exact determination of the coincidence frequency by locating the local minimum of the modal spatial attenuation rate with increasing frequency. In the water-steel system, the coincidence frequency is seen to be 8% in error if methods are employed using the uncoupled theory for the separate fluid and elastic wall.  相似文献   

16.
The time dependent finite difference theory is extended to the solution of the acoustic wave equation in rectangular ducts when acoustic/structural interactions are allowed at a duct wall. The treatment of the boundary condition which describes the coupling is examined, and the stability of the procedure is studied and found to depend on the nature of this coupling. The convergence of solutions is discussed as a function of the discretization of the solution domain, particularly at frequencies approaching resonance.  相似文献   

17.
We calculate traveling waves in the mammalian cochlea, which transduces acoustic vibrations into neural signals. We use a WKB-based mechanical model with both the tectorial membrane (TM) and basilar membrane (BM) coupled to the fluid to calculate motions along the length of the cochlea. This approach generates two wave numbers that manifest as traveling waves with different modes of motion between the BM and TM. The waves add differently on each mass, producing distinct tuning curves and different characteristic frequencies (CFs) for the TM and the BM. We discuss the effect of TM stiffness and coupling on the waves and tuning curves. We also consider how the differential motions between the masses could influence the cochlear amplifier and how mode conversion could take place in the cochlea.  相似文献   

18.
This paper reports on the results of experimental investigations into the threshold power of the onset of nonlinearity of magnetoacoustic vibrations in planar structures (such as a ferrite film-dielectric substrate structure) in the range of phase matching of the higher bulk magnetostatic and acoustic modes. Under the experimental conditions, the wavelength of the higher bulk magnetostatic modes is of the order of 1 μm and shorter. On this basis, the energy of these vibrations with respect to the origin of the magnetostatic wave spectrum is determined by the energy of the inhomogeneous exchange interaction. The standing magnetoacoustic waves are examined in conventional yttrium iron garnet films with free surface spins in which, under standard conditions, only dipole magnetostatic vibrations are excited in planar resonators. Consideration is given to the threshold power of the onset of precession instability of the dipole exchange acoustic modes which, as was shown earlier by the authors, are excited in the range of the phase matching of the exchange and acoustic modes. A comparative analysis is performed for the threshold powers of dipole magnetostatic, exchange acoustic, and dipole exchange acoustic modes. It is demonstrated that the threshold power of the instability of magnetostatic modes decreases significantly when the natural frequencies of the dipole modes coincide with those of the exchange acoustic modes. __________ Translated from Fizika Tverdogo Tela, Vol. 44, No. 7, 2002, pp. 1285–1289. Original Russian Text Copyright ? 2002 by Bugaev, Gorsky.  相似文献   

19.
The results of an experimental and theoretical investigation of the influence of wall vibrations on the sound of brass wind instruments are presented. Measurements of the transmission function and input impedance of a trumpet, with the bell both heavily damped and freely vibrating, are shown to be consistent with a theory that assumes that the internal pressure causes an oscillation of the diameter of the pipe enclosing the air column. These effects are shown to be most significant in sections where there are flaring walls, which explains why damping these vibrations in cylindrical pipes normally produces no measurable effects.  相似文献   

20.
The method of wave function expansion is adopted to study the scattering of a plane harmonic acoustic wave incident at an arbitrary angle upon an arbitrarily thick cylindrically orthotropic homogeneous cylindrical shell submerged in and filled with compressible ideal fluids. A laminate approximate model and the so-called state space formulation in conjunction with the classical transfer matrix (T-matrix) approach are employed to present an analytical solution based on the three-dimensional exact equations of anisotropic elasticity. The solution is used to correlate the perturbation in the material elastic constants of an air-filled and water-submerged aluminium cylindrical shell to the sensitivity of resonances associated with various modes of wave propagation appearing in the backscattered amplitude spectrum (i.e., axially guided, Lamb, Rayleigh and Whispering Gallery waves). The effects of shell wall thickness as well as inner fluid loading on the frequency response of the shell are also examined. A limiting case is considered and good agreement with the solution available in the literature is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号