首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we study the global and asymptotic properties of the solutions of the difference equation $$x_{n+1}=Ax_{n}+Bx_{n-k}+(\beta x_{n}+\gamma x_{n-k})/(Cx_{n}+Dx_{n-k}),\quad n=0,1,2,\ldots,$$ where the initial conditions x ?k ,…,x ?1,x 0 are arbitrary positive real numbers and the coefficients A,B,C,D,β and γ are positive constants, while k is a positive integer number. Some numerical examples will be given to illustrate our results.  相似文献   

2.
In this note we consider the following higher order rational difference equations $$x_{n}=1+\frac{(1-x_{n-k})(1-x_{n-l})(1-x_{n-m})}{x_{n-k}+x_{n-l}+x_{n-m}},\quad n=0,1,\ldots,$$ where 1≤k<l<m, and the initial values x ?m ,x ?m+1,…,x ?1 are positive numbers. We give some sufficient conditions for the persistence of positive solutions for the above equation, and prove that the positive equilibrium point of this equation is globally asymptotically stable.  相似文献   

3.
In this paper, we study the periodicity, the boundedness and the convergence of the following max-type difference equation $$x_n =\max\biggl\{\frac{ 1}{ x_{n-m}} , \frac{A_n }{x_{n-r} }\biggr \},\quad n =0, 1,2,\ldots,$$ where $\{A_{n}\}^{+\infty}_{n=0}$ is a periodic sequence with period k and A n ??(0,1) for every n??0, m??{1,2} and r??{2,3,??} with m<r, the initial values x ?r ,??,x ?1??(0,+??). The special case when $m = 1, r = 2, \{A_{n}\}^{+\infty}_{ n=0}$ is a periodic sequence with period k and A n ??(0,1) for every n??0 has been completely investigated by Y.?Chen. Here we extend his results to the general case.  相似文献   

4.
In this paper, we study the difference equation $$x_{n+1}=p+\frac{x_{n-1}}{x_n}, \quad n=0,1,\ldots, $$ where initial values x ?1,x 0∈(0,+∞) and 0<p<1, and obtain the set of all initial values (x ?1,x 0)∈(0,+∞)×(0,+∞) such that the positive solutions $\{x_{n}\}_{n=-1}^{\infty}$ are bounded. This answers the Open problem 4.8.11 proposed by Kulenovic and Ladas (Dynamics of Second Order Rational Difference Equations, with Open Problems and Conjectures, 2002).  相似文献   

5.
In this paper, we investigate the global stability and the periodic nature of solutions of the difference equation $y_{n + 1} = \frac{{\alpha + y_n^p }} {{\beta y_{n - 1}^p }} - \frac{{\gamma + y_{n - 1}^p }} {{\beta y_n^p }},n = 0,1,2,... $ where α, β, γ ∈ (0,∞), α(1 ? p) ? γ > 0, 0 < p < 1, every y n ≠ 0 for n = ?1, 0, 1, 2, … and the initial conditions y?1, y0 are arbitrary positive real numbers. We show that the equilibrium point of the difference equation is a global attractor with a basin that depends on the conditions of the coefficients.  相似文献   

6.
Let A be an n-square normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…, n. For α,βQm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k∈{0,1,…,m} write z.sfnc;αβ|=k if there exists a rearrangement of 1,…,m, say i1,…,ik, ik+1,…,im, such that α(ij)=β(ij), j=1,…,k, and {α(ik+1),…,α(im)};∩{β(ik+1),…,β(im)}=ø. Let
be the group of n-square unitary matrices. Define the nonnegative number
?k(A)= maxU∈|det(U1AU) [α|β]|
, where |αβ|=k. Theorem 1 establishes a bound for ?k(A), 0?k<m?1, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, n?2m. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that
?m(A)??m?1(A)????0(A)
.  相似文献   

7.
8.
The main objective of this paper is to study the boundedness character, the periodic character and the global stability of the positive solutions of the following difference equation $x_{n + 1} = \frac{{\alpha x_n + \beta x_{n - 1} + \gamma x_{n - 2} + \delta x_{n - 3} }}{{Ax_n + Bx_{n - 1} + Cx_{n - 2} + Dx_{n - 3} }},n = 0,1,2.....$ where the coefficientsA, B, C, D, α, β, γ, δ, and the initial conditionsx -3,x -2,x -1,x 0 are arbitrary positive real numbers.  相似文献   

9.
Our aim in this paper is to investigate the global attractivity of the recursive sequence $$x_{n + 1} = \frac{{\alpha - \beta x_{n - k} }}{{\gamma + x_n }},$$ where α, β, γ >0 andk=1,2,… We show that the positive equilibrium point of the equation is a global attractor with a basin that depends on certain conditions posed on the coefficients.  相似文献   

10.
In 2000, Enomoto and Ota [J Graph Theory 34 (2000), 163–169] stated the following conjecture. Let G be a graph of order n, and let n1, n2, …, nk be positive integers with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} {{n}}_{{{i}}} = {{n}}\end{eqnarray*}. If σ2(G)≥n+ k?1, then for any k distinct vertices x1, x2, …, xk in G, there exist vertex disjoint paths P1, P2, …, Pk such that |Pi|=ni and xi is an endpoint of Pi for every i, 1≤ik. We prove an asymptotic version of this conjecture in the following sense. For every k positive real numbers γ1, …, γk with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} \gamma_{{{i}}} = {{1}}\end{eqnarray*}, and for every ε>0, there exists n0 such that for every graph G of order nn0 with σ2(G)≥n+ k?1, and for every choice of k vertices x1, …, xkV(G), there exist vertex disjoint paths P1, …, Pk in G such that \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} |{{P}}_{{{i}}}| = {{n}}\end{eqnarray*}, the vertex xi is an endpoint of the path Pi, and (γi?ε)n<|Pi|<(γi + ε)n for every i, 1≤ik. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 37–51, 2010  相似文献   

11.
The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,
where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium x=α+1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.  相似文献   

12.
Let A be an n × n normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…,n. For α, β ? Qm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k ? {0, 1,…, m} we write |αβ| = k if there exists a rearrangement of 1,…, m, say i1,…, ik, ik+1,…, im, such that α(ij) = β(ij), i = 1,…, k, and {α(ik+1),…, α(im) } ∩ {β(ik+1),…, β(im) } = ?. A new bound for |detA[α|β ]| is obtained in terms of the eigenvalues of A when 2m = n and |αβ| = 0.Let Un be the group of n × n unitary matrices. Define the nonnegative number
where | αβ| = k. It is proved that
Let A be semidefinite hermitian. We conjecture that ρ0(A) ? ρ1(A) ? ··· ? ρm(A). These inequalities have been tested by machine calculations.  相似文献   

13.
Let pk(A), k=2,…,n, denote the sum of the permanents of all k×k submatrices of the n×n matrix A. A conjecture of Ðokovi?, which is stronger than the famed van der Waerden permanent conjecture, asserts that the functions pk((1?θ)Jn+;θA), k=2,…, n, are strictly increasing in the interval 0?θ?1 for every doubly stochastic matrix A. Here Jn is the n×n matrix all whose entries are equal 1n. In the present paper it is proved that the conjecture holds true for the circulant matrices A=αIn+ βPn, α, β?0, α+;β=1, and A=(nJn?In?Pn)(n?2), where In and Pn are respectively the n×n identify matrix and the n×n permutation matrix with 1's in positions (1,2), (2,3),…, (n?1, n), (n, 1).  相似文献   

14.
In this paper, we consider the following two-point fractional boundary value problem. We provide sufficient conditions for the existence of multiple positive solutions for the following boundary value problems that the nonlinear terms contain i-order derivative where n?1<αn is a real number, n is natural number and n≥2, α?i>1, iN and 0≤in?1. ${}^{c}D_{0^{+}}^{\alpha}$ is the standard Caputo derivative. f(t,x 0,x 1,…,x i ) may be singular at t=0.  相似文献   

15.
Let ?1<α≤0 and let $$L_n^{(\alpha )} (x) = \frac{1}{{n!}}x^{ - \alpha } e^x \frac{{d^n }}{{dx^n }}(x^{\alpha + n} e^{ - x} )$$ be the generalizednth Laguerre polynomial,n=1,2,… Letx 1,x 2,…,x n andx*1,x*2,…,x* n?1 denote the roots ofL n (α) (x) andL n (α)′ (x) respectively and putx*0=0. In this paper we prove the following theorem: Ify 0,y 1,…,y n ?1 andy 1 ,…,y n are two systems of arbitrary real numbers, then there exists a unique polynomialP(x) of degree 2n?1 satisfying the conditions $$\begin{gathered} P\left( {x_k^* } \right) = y_k (k = 0,...,n - 1) \hfill \\ P'\left( {x_k } \right) = y_k^\prime (k = 1,...,n). \hfill \\ \end{gathered} $$ .  相似文献   

16.
Every difference equation x n+1 = f n (x n ,x n ? 1,…,x n ? k ) of order k+1 with each mapping f n being homogeneous of degree 1 on a group G is shown to be equivalent to a system consisting of an equation of order k and a linear equation of order 1.  相似文献   

17.
In this paper, we consider the solutions of discrete second-order boundary value problem $$\left\{\begin{array}{l}\Delta ^{2}y(k-1)+a(k)f(k,y(k))=0,\quad k\in \{1,\ldots,T\},\\[2pt]y(0)-\alpha\Delta y(0)=0,\quad y(T+1)=\beta y(n),\end{array}\right.$$ where f is continuous, T≥3 is a fixed positive integer, n∈{2,…,T?1}, constant α,β>0 such that T+1?β n+α(1?β)>0,T+1?β n>0. Under suitable conditions, we accomplish this by using the property of the associate Green’s function and Leggett-Williams fixed point theorem.  相似文献   

18.
Let E be a real Banach space. Let K be a nonempty closed and convex subset of E, a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n?0⊂[1,+∞), limn→∞kn=1 such that F(T)≠∅. Let {αn}n?0⊂[0,1] be such that n?0αn=∞, and n?0αn(kn−1)<∞. Suppose {xn}n?0 is iteratively defined by xn+1=(1−αn)xn+αnTnxn, n?0, and suppose there exists a strictly increasing continuous function , ?(0)=0 such that 〈Tnxx,j(xx)〉?knxx2?(‖xx‖), ∀xK. It is proved that {xn}n?0 converges strongly to xF(T). It is also proved that the sequence of iteration {xn} defined by xn+1=anxn+bnTnxn+cnun, n?0 (where {un}n?0 is a bounded sequence in K and {an}n?0, {bn}n?0, {cn}n?0 are sequences in [0,1] satisfying appropriate conditions) converges strongly to a fixed point of T.  相似文献   

19.
Letx 1, …,x n be givenn distinct positive nodal points which generate the polynomial $$\omega _n (x) = \prod\limits_{i = 1}^n {(x - x_i )} .$$ Letx*1, …,x* n?1 be the roots of the derivativeω n (x) and putx 0=0. In this paper, the following theorem is proved: Ify 0, …,y n andy1, …,y n?1 are arbitrary real numbers, then there exists a unique polynomialP 2n?1(x) of degree 2n?1 having the following interpolation properties: $$P_{2n - 1} (x_j ) = y_j (j = 0,...,n),$$ , $$P_{2n - 1}^\prime (x_j^* ) = y_j^\prime (j = 1,...,n - 1).$$ . This result gives the theoretical completion of the original Pál type interpolation process, since it ensures uniqueness without assuming any additional condition.  相似文献   

20.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号