首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
聚变堆用结构材料CLF-1研究进展   总被引:1,自引:0,他引:1  
本文报道了我院近半年来低活性铁素体/马氏体钢CLF-1的研究进展。通过微观组织观察和室温拉伸性能测试,证明该钢已具有优于Eurofer97的室温拉伸性能,而且得到了全马氏体的微观组织。  相似文献   

2.
 利用二级轻气炮驱动弹丸的高速碰撞,向45钢材料试件中传入冲击波。利用显微硬度计、扫描电镜与透镜电镜,观察冲击波处理后45钢的显微硬度和细微观组织结构。观察分析结果表明,冲击波引起了45钢中珠光体内片状渗碳体的孪晶,并在铁素体内造成高密度的位错与位错胞。在铁素体中,除α相外,还观察到另外一个相,这个相有待进一步辨别。  相似文献   

3.
用碳化物粒子对低活化钢CLF-1进行弥散强化.结果表明机械合金化的方法可以制备高强度的碳化物弥散强化钢,经过60h球磨可完成合金化过程,同时添加的碳化物粒子很好地提高了低活化钢CLF-1的拉伸性能,得到了比熔炼低活化钢更高的强度和硬度,同时保持了较好的延伸率.  相似文献   

4.
丁兆楠  杨义涛  宋银  张丽卿  缑洁  张崇宏  罗广南 《物理学报》2017,66(11):112501-112501
为了探讨聚变堆候选低活化钢的抗辐照性能,在兰州重离子加速器国家实验室HIRFL的材料辐照终端,利用63 MeV的~(14)N离子和336 MeV的~(56)Fe离子在-50?C下对一种国产低活化钢进行辐照实验.借助离子梯度减能装置,使入射离子能量在0.22—6.17 MeV/u之间变化,从而在样品表面至24μm深度范围内产生0.05—0.20 dpa的原子离位损伤坪区.利用纳米压痕仪测试样品辐照前后的显微硬度,通过连续刚度测量(constant stiffness measurement)得到低活化钢硬度的深度剖面信息.使用Nix-Gao模型很好地描述了纳米压痕硬度随深度递减的现象(压痕尺寸效应,indentation size effect),从而有效避免了低能离子辐照的软基体效应(softer substrate effect).正电子湮灭寿命谱显示低活化钢在辐照之后长寿命成分增加,说明样品中产生了大量缺陷形成空位团,从而导致了材料力学性能的变化,在离子辐照剂量增加至0.2 dpa时,平均寿命τ_m增加量逐渐变慢,材料中辐照产生的缺陷趋于饱和.  相似文献   

5.
在中国聚变工程实验堆(CFETR)水冷陶瓷增殖(WCCB)包层的设计条件下,对水冷包层应用SIMP 钢,使用蒙特卡罗中子输运程序MCNP 与欧洲研制的材料活化计算程序FISPACT 耦合计算,分析了SIMP 钢结构材料的放射性比活度、衰变热、接触剂量率和辐照损伤等。通过与EUROFER-97、F82H 等多种低活化钢的对比发现,SIMP 钢在多个活化结果上达到国际上认可的低活化铁素体/马氏体钢(RAFM)的低活化特性。因此,SIMP 钢可作为未来聚变堆包层的候选结构材料。  相似文献   

6.
铁素体/马氏体钢,如T91钢和SIMP钢,被选为第4代铅冷快堆和加速器驱动系统(ADS)的主要候选结构材料.但容器钢与液态铅铋共晶(LBE)在高温下的相容性限制了它们的应用.铁素体/马氏体钢在600℃的LBE中腐蚀严重.为了保护铁素体/马氏体钢免受高温LBE腐蚀,在钢表面制备AlOx (x <1.5)涂层.本文采用磁控溅射法在T91钢和SIMP钢表面制备了AlOx涂层.对表面有涂层的T91钢和SIMP钢以及表面无涂层的T91钢和SIMP钢在600℃的饱和氧浓度的LBE中腐蚀300 h和700 h的结果进行比较.结果表明,涂层钢表面的氧化层比无涂层钢表面的氧化层薄,这表明AlOx涂层可以有效防止铁、铬和氧元素的快速扩散.然而,在LBE中腐蚀700 h后, AlOx涂层出现裂纹,表面有涂层的T91钢和SIMP钢均遭受到明显的氧化腐蚀,说明该涂层在600℃的LBE中可以在短时间内保护基体免受高温腐蚀.但是涂层在600℃的LBE中不能长时间保持稳定.这可能是由于此次实验条件制备的AlOx  相似文献   

7.
为研究低活化铁素体/马氏体钢(RAFM) CLF-1激光焊接模式转变规律,对其焊缝横截面形貌及尺寸进行了宏观表征和定量分析。结果表明,在一定条件下,随着焊接功率的增大,焊接模式从热传导焊模式向小孔深熔焊模式转变,焊缝横截面表现为“圆弧形”、“V字形”和“钉头形”三种类型形貌。CLF-1钢激光焊接模式不受焊接速度、离焦量变化的影响。激光焊接模式转变的临界值为深熔焊阈值,CLF-1钢深熔焊阈值由材料自身特性决定,当焊接速度为10mm·s-1时,CLF-1钢深熔焊阈值约为1.20kW·mm-1。  相似文献   

8.
中国聚变工程实验堆(CFETR)偏滤器材料采用穿管型结构,由最外层钨、铜中间层、铬锆铜(CuCrZr)或低活化马氏体钢(CLAM)热沉组成。探究了铜和两种热沉材料高温性能。对铜进行了高温低周疲劳试验,验证了铜夹层在不同工况下的循环寿命。对于CuCrZr和CLAM两种材料,进行了不同工况的应力松弛试验,拟合得到了松弛应力与总应变的关系式,对试验结果进行了对比。  相似文献   

9.
低活化的铁素体/马氏体钢是先进核能装置(如聚变堆)的重要候选结构材料。 在聚变堆实际工作环境下, 由于高温和高氦产生率引起的材料失效是这类材料面临的一个重要问题。 本项研究以兰州重离子加速器(HIRFL)提供的中能惰性气体离子束(20Ne, 122 MeV)作为模拟辐照条件, 借助透射电子显微镜, 研究了一种低活化的9Cr铁素体/马氏体钢(T92B)组织结构的变化和辐照肿胀。 实验结果表明, 高温下当材料中晶格原子的撞出损伤和惰性气体原子沉积浓度超过一定限值时, 材料内部形成高浓度的空洞, 并且空洞肿胀率显著依赖于辐照温度和剂量; 在马氏体板条界面及其它晶界处空洞趋于优先形成, 并且在晶界交汇处呈加速生长。 基于氦泡的形核生长与空洞肿胀的经典模型探讨了在不同辐照条件(He离子、 Ne离子、 Fe/He离子双束、 快中子、 Ni离子)下铁素体/马氏体钢中肿胀率数据的关联。Low activation Ferritic/Martensitic steels are a kind of important structural materials candidate to the application in advanced nuclear energy systems. Possible degradation of properties and even failure in the condition of high temperature and high helium production due to energetic neutron irradiation in a fusion reactor is a major concern with the application of this kind of materials. In the present work microstructural evolution in a 9Cr Ferritic/Martensitic steel (T92B) irradiated with 122 MeV 20Ne ions at temperatures between 0.3—0.5 Tm (Tm is the melting point of the material) was investigated with transmission electron microscopy. High concentration voids were observed in the specimens irradiated at high temperatures when the displacement damage dose and Ne concentration exceed a certain level. Preferential formation of voids at lath boundaries and other grain boundaries was found. The data of void swellings in 9Cr ferritic/martensitic steels irradiated in different conditions (such as with He ions, Ne ions, Fe/He dual beams, fast neutrons, Ni ions etc.) were compiled and analyzed based on a classic model of helium bubble formation, and bubble to void transition.  相似文献   

10.
CLAM钢冲击和拉伸性能测试与研究   总被引:3,自引:0,他引:3  
对中国低活化马氏体钢——CLAM钢的冲击和拉伸性能进行了测试。结果表明:CLAM钢的塑。脆转变温度在-100℃左右,低于国际上其它几种典型的低活化马氏体钢;在室温和600℃时抗拉强度分别为668和334MPa,类似于EUROFER97的性能。约8μm的晶粒尺寸是CLAM钢具有较好冲击和拉伸性能的主要原因之一。The impact and tensile tests were carried out on the China Low Activation Martensitic steels (CLAM). The results show: the Ductile-Brittle Transition Temperature (DBTY) is about - 100 ℃, which is lower than those of some other RAFMs; The ultimate strength are 668 MPa at room temperature and 334 MPa at 600℃, which are comparable to those of EUROFER97. The finer grain size of about 8 μm was considered as one of reasons for the superior mechanical properties of CLAM.  相似文献   

11.
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.  相似文献   

12.
The phenomenon of ratcheting occurs under the influence of non-zero mean stress during cyclic loading; it singificantly reduces the low cycle fatigue life of engineering structures. The present investigation deals with a detailed comparison on the estimation of dislocation densities in the 42CrMo4 steel induced by ratcheting using two different methods, i.e. X-ray diffraction (XRD) profile analysis and hardness. The dislocation densities in the ratcheted specimens were assessed using XRD profile analysis following the modified Williamson–Hall method as well as hardness measurements following the modified Nix and Gao model. The results showed that dislocation density increased in the ratcheted specimens as compared to the unratcheted ones and increase in accumulation of ratcheting strain was correlated with the increase in dislocation densities in the ratcheted specimens. It was established that both hardness and X-ray diffraction profile analysis methods can very effectively be used to assess the dislocation densities in the ratcheted specimens.  相似文献   

13.
A new-generation unalloyed low-carbon steel (containing 0.1?wt.% C) has been recently developed by the research group of the present corresponding author through incomplete austenitisation-based cyclic ice-brine quenching possessing an exceptionally high strength (UTS?=?1.7?GPa) along with elimination of a yield point phenomenon. This is attributed to the evolution of a novel microstructure that consists of fine plate martensite crystals with a dispersion of nano-sized cementite particles and clusters. The present research work is conceived as the Part II of this investigation to establish this new-generation ultrahigh strength low-carbon steel as a unique wear-resistant steel substituting the conventional dual-phase steel along with the readily awaited in-depth correlation between wear mechanism and structural evolution. The wear behaviour of heat-treated steels is investigated against an alumina disc using a pin-on-disc tribometer. The steel subjected to incomplete austenitisation-based cyclic ice-brine quenching exhibits much better wear resistance than conventional dual-phase steel. Dominant microcutting and microploughing abrasion aggravate wear loss, especially at higher load, in dual-phase steel that inherently possesses lower matrix hardness. But, very high-surface hardness is attained in the incomplete austenitisation-based cyclic ice-brine quenched steel by virtue of a significant strain hardening of martensite matrix in between hard nano-sized cementite particles. Besides, the wear rate is not allowed to shoot up even at the highest load through the generation of hard abrasion-resistant tribo-oxide layer of Al2FeO4. This envisages an advent of novel wear-resistant steel as a better substitution for the dual-phase steel.  相似文献   

14.
In this study, optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and electron probe microanalyser were used to analyse the changes in microstructure of AISI 4340 steel specimens caused by impact at high strain rates and large strains. The structures of the steel prior to dynamic deformation and after dynamic deformation were examined to understand on a microscale level, the mechanism of formation of adiabatic shear bands (ASBs). The study also includes the structural changes that occur during post-deformation annealing processes which may relate to understanding of the mechanism of formation of ASBs. Prior to deformation, the tempered steel specimens consisted of lenticular laths of α-ferrite with precipitated platelet and spherical M3C carbides. After impact, the structure inside the shear band was characterized by refined and recrystallized grains immersed in dense dislocation structures. In addition, residual carbide particles were observed inside the shear bands due to deformation induced carbide dissolution. Regions away from the shear bands developed ‘knitted’ dislocation walls, evolving gradually into sub-boundaries and highly misoriented grain boundaries at increasing strains, leading to grain refinement of the ferrite. After impact, annealing the shear bands at 350?°C resulted in an increase in hardness regardless of the heat treatment before impact, amount of deformation and the time of annealing. This is because of the occurrence of extensive reprecipitation of dissolved carbides that existed in the steel structure prior to deformation. It is concluded that dynamic recovery/recrystallization, development of dislocation structures and carbide dissolution all contribute simultaneously to the formation of ASBs in quench-hardened steels.  相似文献   

15.
研究了中子辐照后铝的微观结构和力学性能的变化。发现中子辐照使铝的硬度有了一定的提高,同时在铝的内部产生了大量细小的位错环。The change of microstructure and mechanical property in neutron irradiated aluminum was studied. It is found that neutron irradiation increased the hardness of the aluminum and caused the formation of many small dislocation loops in the aluminum.  相似文献   

16.
In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.  相似文献   

17.
为了获得性能优异的涂层材料,采用激光熔覆的方法在Q235钢基体上制备了不同Mo含量的FeCrNiMnMoB0.5系高熵合金涂层,着重探究Mo对高熵合金组织与性能的影响。通过金相、X射线衍射、扫描电镜、硬度计、电化学工作站分别研究了高熵合金涂层的显微组织、相结构、显微硬度及耐蚀性能。结果表明:FeCrNiMnMoB0.5系高熵合金组织为树枝晶,主要由fcc相和少量金属间化合物构成。当添加少量Mo时,涂层的硬度较低,为290 HV,随着Mo的增加,晶格畸变加剧,出现少量金属化合物,涂层硬度最大增加到658 HV。在模拟饱和盐水泥浆溶液中FeCrNiMnMo0.4B0.5表现出较好的耐腐蚀性。  相似文献   

18.
碳化钨对激光熔覆高熵合金的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
为了获得高性能的涂层材料,采用激光熔覆的方法,在Q235钢基体上制备了FeSiCrCoMo高熵合金涂层,并研究了WC对高熵合金涂层的组织和性能的影响。通过金相、X射线衍射、扫描电镜、硬度计、磨损试验机分别研究了添加WC前后涂层的微观形貌、相结构、硬度及磨损性能。结果表明:高熵合金FeSiCrCoMo涂层组织为粗大枝状晶,主要由BCC相和金属间化合物构成,添加WC后,涂层中形成了致密细小的胞状晶,同时BCC相增多,金属间化合物明显减少;添加WC后涂层的硬度明显增强,平均硬度提升了23%,涂层表面平均硬度达到了687HV0.2;WC的添加使得涂层的摩擦系数减小,磨损率减小,耐磨性能提高。  相似文献   

19.
The effect of gradients in hardness, structure and composition in the surface layers on magnetic Barkhausen noise (MBN) was investigated in two widely used low alloy steels. One material was case hardened by induction hardening. The other was case carburised. Similar hardness profiles were produced by the two treatments. It was found that the variation in structure and hardness through the case in the induction-hardened steel had a minor effect on the MBN profile. In contrast, the inhomogeneity in the case-carburised material showed up clearly. This took the form of a broadened or two-peak MBN profile. When the surface layer containing the case was removed by etching, the broadened profile was replaced by a profile with a single peak. It is concluded that the shape and position of the MBN profile is significantly affected when a gradient in microstructure is induced by a gradient in carbon content. On the other hand, a gradient in microstructure induced by heat treatment with a constant carbon level has much less affect on the MBN profile for the induction-hardened steel.  相似文献   

20.
石墨烯因其优异的力学性能已成为增强金属基复合材料的理想增强体.然而,目前对石墨烯/金属基复合材料在纳米压痕过程中嵌入石墨烯与位错之间的相互作用仍不清晰.本文采用分子动力学模拟方法,对90°,45°和0°位向的石墨烯/铝基复合材料进行了纳米压痕模拟,研究了压痕加载和卸载过程中石墨烯/铝基复合材料的位错形核及演化,以获取不同位向的石墨烯与位错的相互作用机制,并分析其对塑性区的影响.研究发现,石墨烯可以有效阻碍位错运动,并且石墨烯会沿着位错滑移方向发生弹性变形.在纳米压痕过程中,位错与不同位向石墨烯之间的相互作用差异导致塑性区的变化趋势不同.研究结果表明,在石墨烯/铝基复合材料中,位向不同的石墨烯对位错阻碍强度和方式不同,且石墨烯位向为45°的复合材料的硬度高于其他模型.此外,石墨烯/铝基复合材料的位错线总长度的演化规律与石墨烯位向紧密相关.本文研究可为设计和制备高性能石墨烯/金属基复合材料提供一定的理论指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号