首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyridoxal-5'-phosphate (vitamin B(6))-dependent enzymes that act on amino acid substrates have multiple evolutionary origins. Thus, the common mechanistic features of B(6) enzymes are not accidental historical traits but reflect evolutionary or chemical necessities. The B(6) enzymes belong to four independent evolutionary lineages of paralogous proteins, of which the alpha family (with aspartate aminotransferase as the prototype enzyme) is by far the largest and most diverse. The considerably smaller beta family (tryptophan synthase beta as the prototype enzyme) is structurally and functionally more homogenous. Both the D-alanine aminotransferase family and the alanine racemase family consist of only a few enzymes. The primordial pyridoxal-5'-phosphate-dependent protein catalysts apparently first diverged into reaction-specific protoenzymes, which then diverged further by specializing for substrate specificity. Aminotransferases as well as amino acid decarboxylases are found in two different evolutionary lineages, providing examples of convergent enzyme evolution. The functional specialization of most B(6) enzymes seems to have already occurred in the universal ancestor cell before the divergence of eukaryotes, archebacteria, and eubacteria 1500 million years ago. Pyridoxal-5'-phosphate must have emerged very early in biological evolution; conceivably, metal ions and organic cofactors were the first biological catalysts. To simulate particular steps of molecular evolution, both the substrate and reaction specificity of existent B(6) enzymes were changed by substitution of active-site residues, and monoclonal pyridoxal-5'-phosphate-dependent catalytic antibodies were produced with selection criteria that might have been operative in the evolution of protein-assisted pyridoxal catalysis.  相似文献   

2.
cis-Diamminedichloroplatinum(II) binds covalently to the bases of DNA and exhibits a number of distinct modes of binding that can influence the structure of DNA. Of these, the intrastrand crosslink to adjacent guanines appears responsible for unwinding of supercoiled DNA and stimulating S1 nuclease activity. Investigation of the binding that occurs in chromatin reveals that the antitumor drug also forms crosslinks between DNA and the HMG proteins 1, 2, and E in micrococcal nuclease-accessible regions, in addition to protein-protein crosslinks between the LMG proteins. From the studies on both DNA and chromatin, we propose 1) a model for the interaction of, and the general location of, these HMG proteins in chromatin and 2) novel mechanisms for the possible action of cis-diamminedichloroplatinum(II) in cancer chemotherapy.  相似文献   

3.
化学核酸酶及其作用机理   总被引:3,自引:0,他引:3  
杨频  高飞  马贵斌 《化学进展》1997,9(3):273-282
化学核酸酶是一类人工设计、合成的DNA 或RNA 定位断裂工具, 由核酸识别结合系统和化学断裂系统组成。它们能够在任何位点断裂单链、双链DNA 或RNA , 不受限制性内切酶的天然专一性限制。本文除介绍了一些新的化学核酸酶体系外, 着重对它们的作用方式及作用机理进行了讨论。  相似文献   

4.
A novel LNA-MB (molecular beacon based on locked nucleic acid bases) has been designed and investigated. It exhibits very high melting temperature and is thermally stable, shows superior single base mismatch discrimination capability, and is stable against digestion by nuclease and has no binding with single-stranded DNA binding proteins. The LNA-MB will be widely useful in a variety of areas, especially for in vivo hybridization studies.  相似文献   

5.
The chalcone synthase superfamily of type III polyketide synthases   总被引:3,自引:0,他引:3  
This review covers the functionally diverse type III polyketide synthase (PKS) superfamily of plant and bacterial biosynthetic enzymes. from the discovery of chalcone synthase (CHS) in the 1970s through the end of 2001. A broader perspective is achieved by a comparison of these CHS-like enzymes to mechanistically and evolutionarily related families of enzymes, including the type I and type II PKSs, as well as the thiolases and beta-ketoacyl synthases of fatty acid metabolism. As CHS is both the most frequently occurring and best studied type III PKS, this enzyme's structure and mechanism is examined in detail. The in vivo functions and biological activities of several classes of plant natural products derived from chalcones are also discussed. Evolutionary mechanisms of type III PKS divergence are considered, as are the biological functions and activities of each of the known and functionally divergent type III PKS enzymc families (currently twelve in plants and three in bacteria). A major focus of this review is the integration of information from genetic and biochemical studies with the unique insights gained from protein X-ray crystallography and homology modeling. This structural approach has generated a number of new predictions regarding both the importance and mechanistic role of various amino acid substitutions observed among functionally diverse type III PKS enzymes.  相似文献   

6.
NMR techniques can give insight into a wide variety of motional events that occur in proteins over a range of timescales. In the first section of this article an overview of the results of dynamics studies, using NMR methods, on both small globular and larger multi-domain proteins is presented including the findings from investigations of non-native partly folded states. The second section of the article then concentrates on two topics where NMR can give residue specific quantitative data, namely coupling constant measurements and relaxation studies, including comparisons of these NMR data with results from crystallographic studies and theoretical molecular dynamics simulations. Finally the possible functional significance of the experimentally observed motions in proteins is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Surface-confined DNA probes are increasingly used as recognition elements (or presentation scaffolds) for detection of proteins, enzymes, and other macromolecules. Here we demonstrate that the density of the DNA probe monolayer on the gold electrode is a crucial determinant of the final signalling of such devices. We do so using redox modified single-stranded and double-stranded DNA probes attached to the surface of a gold electrode and measuring the rate of digestion in the presence of a non-specific nuclease enzyme. We demonstrate that accessibility of DNA probes for binding to their macromolecular target is, as expected, improved at lower probe densities. However, with double-stranded DNA probes, even at the lowest densities investigated, a significant fraction of the immobilized probe is inaccessible to nuclease digestion. These results stress the importance of the accessibility issue and of probe density effects when DNA-based sensors are used for detection of macromolecular targets.  相似文献   

8.
Movement is intrinsic to life. Biologists have established that most forms of directed nanoscopic, microscopic and, ultimately, macroscopic movements are powered by molecular motors from the dynein, myosin and kinesin superfamilies. These motor proteins literally walk, step by step, along polymeric filaments, carrying out essential tasks such as organelle transport. In the last few years biological molecular walkers have inspired the development of artificial systems that mimic aspects of their dynamics. Several DNA-based molecular walkers have been synthesised and shown to walk directionally along a track upon sequential addition of appropriate chemical fuels. In other studies, autonomous operation--i.e. DNA-walker migration that continues as long as a complex DNA fuel is present--has been demonstrated and sophisticated tasks performed, such as moving gold nanoparticles from place-to-place and assistance in sequential chemical synthesis. Small-molecule systems, an order of magnitude smaller in each dimension and 1000× smaller in molecular weight than biological motor proteins or the walker systems constructed from DNA, have also been designed and operated such that molecular fragments can be progressively transported directionally along short molecular tracks. The small-molecule systems can be powered by light or chemical fuels. In this critical review the biological motor proteins from the kinesin, myosin and dynein families are analysed as systems from which the designers of synthetic systems can learn, ratchet concepts for transporting Brownian substrates are discussed as the mechanisms by which molecular motors need to operate, and the progress made with synthetic DNA and small-molecule walker systems reviewed (142 references).  相似文献   

9.
Partitioning of restriction endonucleases between two liquid aqueous phases can be strongly influenced by group-specific ligands included in the two-phase system. Three restriction endonucleases, namely EcoR I, EcoR V and BamH I, were partitioned within an aqueous dextran-polyethylene glycol (PEG) system. The enzymes could be extracted into the upper PEG phase by using either triazine dyes or herring DNA as affinity ligands. The influence of the endogenous bacterial nucleic acids, concentration of polymerbound dye and concentration of sodium chloride on the system were examined. A partial purification of EcoR I (up to 52-fold) and EcoR V (up to 37-fold) was achieved using a combination of affinity partitioning and ion-exchange chromatography, providing an extremely fast and economical method for the isolation of restriction endonucleases free from contaminating nuclease activities.  相似文献   

10.
The Gcn5-related N-acetyltransferases (GNAT) comprise one of the largest enzyme superfamilies, with over 10 000 known members represented in all kingdoms of life. ChloroacetylCoenzymeA was prepared and demonstrated to be a substrate for several GNAT members. ChloroacetylCoA (ClAcCoA) is used by the Hat1 histone acetyltransferase to correctly acetylate histone H4 in a mixture of histone proteins. Chloroacetylation can be assessed by the subsequent reaction of the chloroacetylated product with thiol-containing compounds, including those with fluorescent or affinity (His8) tags. The bacterial RimL N-acetyltransferase also uses ClAcCoA to chloroacetyl the alpha-amino group of its cognate substrate, the ribosomal L12 protein, and this reaction can be observed in crude extracts. ChloroacetylCoA is a reagent that can be used to identify the unknown substrate(s) for this large family of functionally uncharacterized enzymes.  相似文献   

11.
袁彩霞  杨频 《化学进展》2005,17(1):0-84
核酸切割试剂与寡聚核苷酸(ODN)偶联制得的人工核酸酶能在特定位点断裂DNA或RNA,为人工核酸酶的分子设计提供了一种新方法.本文综述了金属配合物-ODN识别切割试剂的偶联方式及其与靶分子的作用机制,并指出了今后的研究方向.  相似文献   

12.
Ultra-high molecular weight DNA/polymer hybrid materials were prepared employing molecular biology techniques. Nucleic acid restriction and ligation enzymes were used to generate linear DNA di- and triblock copolymers that contain up to thousands of base pairs in the DNA segments.  相似文献   

13.
DNA nanotechnology provides an approach to create precise, tunable, and biocompatible nanostructures for biomedical applications. However, the stability of these structures is severely compromised in biological milieu due to their fast degradation by nucleases. Recently, we showed how enzymatic polymerization could be harnessed to grow polynucleotide brushes of tunable length and location on the surface of DNA origami nanostructures, which greatly enhances their nuclease stability. Here, we report on strategies that allow for both spatial and temporal control over polymerization through activatable initiation, cleavage, and regeneration of polynucleotide brushes using restriction enzymes. The ability to site-specifically decorate DNA origami nanostructures with polynucleotide brushes in a spatiotemporally controlled way provides access to “smart” functionalized DNA architectures with potential applications in drug delivery and supramolecular assembly.  相似文献   

14.
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.  相似文献   

15.
This review deals with results from crystallographic studies on proteins that interact with the essential micronutrient cobalamin (vitamin B12). Both B12-dependent enzymes and B12-transport proteins are described with an emphasis on structural aspects of cobalamin and its protein environment.  相似文献   

16.
Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.  相似文献   

17.
A method has been developed in which the DNA of leukocytes (as the buffy coat from blood) is isolated in the form of its constituent deoxynucleotides. The steps in this method are as follows: (1) lyse the leukocytes with sodium dodecyl sulfate (SDS) and enzymatically digest the proteins and RNA, (2) remove the SDS on a non-polar adsorbent (Bio-Beads SM-4) and then trap the DNA on a quaternary amine silica cartridge, (3) wash the column with 1 M NaCl-buffer, (4) digest the DNA on the column with staphylococcal nuclease and (5) elute the digested DNA with 0.5 M NaCl-buffer and digest it further with bovine spleen phosphodiesterase II to deoxynucleotide-3′-monophosphates. From a 40-μl sample of butty coat was obtained 126 ± 14 μg (two experiments, eight sample total) of deoxynucleotides. Reversed-phase high-performance liquid chromatography, which removed the added enzymes, showed only peaks for deoxynucleotides. For comparison, the amount of deoxynucleotides obtained from the leukocytes by an automated phenol extraction procedure was 101 ± 5.4 μg (one experiment in triplicate).  相似文献   

18.
The effects of several chemical reagents on the activity of the restriction endonucleasesPvuII andHindIII were investigated. Carbodiimide, which reacts preferentially with carboxyl groups, was found to inactivate these enzymes. This specific effect could be prevented by Mg2+ cation. pBR322 DNA, which containsPvuII andPvuII* sites andHindIII andHindIII* sites, did not protect the enzymes from the carbodiimide. On the other hand, glutaraldehyde, which reacts primarily with lysine residues, inactivatesPvuII andHindIII enzymes. This specific effect could not be prevented by pBR322 DNA. Preincubation with high concentrations ofN-ethylmaleimide, which reacts with sulfhydryl groups, caused slight inhibition ofPvuII activity, but had no effect on the activity ofHindIII enzyme. The effects of glutaraldehyde, carbodiimide, andN-ethylmaleimide on other restriction endonucleases were also investigated. Restriction endonucleasesPvuII andHindIII were immobilized by covalent coupling to various insoluble carriers. Both immobilized enzymes retained partial enzyme activities, when immobilized through phenolic groups and were stable for at least two months.  相似文献   

19.
DNA-based logic gates promote the development of molecular computing and show enormous potential in the fields of nanotechnology and biotechnology. Dumbbell oligonucleotides(DNA) with poly-thymine(poly-T) loops and a nicked random double strand have been demonstrated to be an efficient template for the formation of fluorescent copper nanoclusters(Cu NCs) in our previous work. Herein, a new platform technology is presented with which to construct molecular logic gates by employing Cu NCs probe as...  相似文献   

20.
An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC50 = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC50 = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号