首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transport and magnetic properties of junctions created in La0.67Sr0.33MnO3 thin films epitaxially grown on substrates with a bicrystal boundary have been investigated. In tilted neodymium gallate bicrystal substrates, the NdGaO3(110) planes are inclined at angles of 12° and 38°. The temperature dependences of the electrical resistance, magnetoresistance, and differential conductance of the junctions at different voltages have been measured and analyzed. It has been found that the magnetoresistance and electrical resistance of the junction significantly increase with an increase in the misorientation angle, even though the misorientation of the easy magnetization axes remains nearly unchanged. The ratio of the spin-dependent and spin-independent contributions to the conductance of the bicrystal junction increases by almost an order of magnitude with an increase in the misorientation angle from 12° to 38°. The magnetoresistance of the junction increases with decreasing temperature, which is most likely associated with an increase of the magnetic polarization of the electrons. It has been shown that, at low (liquid-helium) temperatures, the conductance depends on the voltage V according to the law V 1/2, which indicates the dominant contribution from the electron-electron interaction to the electrical resistance of the junction. An increase in the temperature leads to a decrease in this contribution and an increase in the contribution proportional to V 3/2, which is characteristic of the mechanism involving inelastic spin scattering by surface antiferromagnetic magnons.  相似文献   

2.
The features of magnetization of rare-earth multiferroic PrFe3(BO3)4 with the singlet ground state have been investigated theoretically. The magnetic anisotropy of the crystal has been studied. The temperature dependences of anisotropy constants have been calculated. The phase H-T diagram has been constructed. The dependences of the behavior of magnetization vectors of magnetic sublattices on the external magnetic field have been obtained. The magnetoelectric effect has been investigated, and the dependences of polarization on the temperature and field have been found for its various orientations. The theoretical data have been compared with the experimental data and their good agreement has been established.  相似文献   

3.
This paper reports on an investigation of the temperature dependences of the capacitance and conductance of composite materials prepared by incorporating the ferroelectric TGS and its analogs—TGS with addition of L,α-alanine and chromium—into porous Al2O3 and SiO2 matrices. It has been established that conduction of the structures under study involves charge transport predominantly through the ferroelectric embedded in the porous matrix. A mechanism is proposed to account for the displacement of the phase transition temperature of the ferroelectric inclusion under “restricted geometry” conditions, which is driven by the difference between the thermal expansion coefficients of the porous matrix and the embedded ferroelectric.  相似文献   

4.
The hopping ac conductance, which is realized at the transverse conductance minima in the regime of the integer Hall effect, has been measured using a combination of acoustic and microwave methods. Measurements have been made in the p-GeSi/Ge/GeSi structures with quantum wells in a wide frequency range (30–1200 MHz). The experimental frequency dependences of the real part of ac conductance σ1 have been interpreted on the basis of the model presuming hops between localized electronic states belonging to isolated clusters. At high frequencies, dominating clusters are pairs of close states; upon a decrease in frequency, large clusters that merge into an infinite percolation cluster as the frequency tends to zero become important. In this case, the frequency dependences of the ac conductance can be represented by a universal curve. The scaling parameters and their magnetic-field dependence have been determined.  相似文献   

5.
The dependences of the electrical conductance of water (G) on temperature T upon quasi-static heating from 0 to 7°C with a rate of 0.1°C per 200?C250 s have been obtained by the capacitance method in the sound frequency ranges. Anomalies have been found in the dependences G(T) near 4°C for water containing charge carriers of different types and concentrations.  相似文献   

6.
Proton elastic scattering data from 197Au, 208Pb and 209Bi at energies near the Coulomb barrier are analyzed. The energy dependences of the real volume and imaginary surface-derivative potential depths VR and WSF of a local optical-model potential with fixed geometric parameters are found to be much more rapid than at higher energies. The strong energy dependence of VRnear the Coulomb barrier is explained in terms of the non-locality of the nucleon-nucleus interaction.  相似文献   

7.
The temperature dependences of the capacitance and conductance measured for samples of porous aluminum oxide films with inclusions of triglycine sulfate have been investigated. The character of these dependences obtained for the films treated in a humid atmosphere differs from that of the corresponding dependences measured for the initial porous Al2O3 matrix, bulk triglycine sulfate, and dried Al2O3 + triglycine sulfate composite. The observed changes are determined by the influence of the water adsorbed on the surface of the film and the water structured in pores of the composite.  相似文献   

8.
The compound Bi24(CoBi)O40 has been synthesized using the solid-phase reaction method. The temperature and field dependences of the magnetic moment in the temperature range 4 K < T < 300 K and the temperature dependences of the EPR line width and g-factor at temperatures 80 K < T < 300 K have been investigated. The electrical resistivity and thermoelectric power have been measured in the temperature range 100 K < T < 1000 K. The activation energy has been determined and the crossover of the thermoelectric power from the phonon mechanism to the electron mechanism with variations in the temperature has been observed. The thermal expansion coefficient of the samples has been measured in the temperature range 300 K < T < 1000 K and the qualitative agreement with the temperature behavior of the electrical resistivity has been achieved. The electrical and structural properties of the compound have been explained in the framework of the model of the electronic-structure transition with inclusion of the exchange and Coulomb interactions between electrons and the electron-phonon interaction.  相似文献   

9.
The temperature and concentration dependences of the elastic moduli and the thermal linear expansion coefficient of Zr z Nb1 ? z C x N y solid solutions containing from 3 to 8 at % of structural vacancies in a nonmetallic sublattice have been found. The temperature dependences of the Debye temperature ΘD(T) have been calculated using the elastic data and the data on the heat capacity. It has been shown, using carbide NbC0.97 as an example, that the ΘD(T) dependences found from the elastic properties and the heat capacity coincide in the temperature range ~220–300 K. By analogy with the niobium carbide, the heat capacity C p (300) of Zr z Nb1 ? z C x N y solid solutions of various compositions is calculated based on the values of ΘD(300) determined from the elastic properties.  相似文献   

10.
Transport characteristics of relativistic electrons through graphene-based d-wave superconducting double barrier junction and ferromagnet/d-wave superconductor/normal metal double junction have been investigated based on the Dirac–Bogoliubov–de Gennes equation. We have first presented the results of superconducting double barrier junction. In the subgap regime, both the crossed Andreev and nonlocal tunneling conductance all oscillate with the bias voltage due to the formation of Andreev bound states in the normal metal region. Moreover, the critical voltage beyond which the crossed Andreev conductance becomes to zero decreases with increasing value of superconducting pair potential α. In the presence of the ferromagnetism, the MR through graphene-based ferromagnet/ d-wave superconductor/normal metal double junction has been investigated. It is shown that the MR increases from exchange splitting h 0=0 to h 0=E F (Fermi energy), and then it goes down. At h 0=E F, MR reaches its maximum 100. In contrast to the case of a single superconducting barrier, Andreev bound states also manifest itself in the zero bias MR, which result in a series of peaks except the maximum one at h 0=E F. Besides, the resonance peak of the MR can appear at certain bias voltage and structure parameter. Those phenomena mean that the coherent transmission can be tuned by superconducting pair potential, structure parameter, and external bias voltage, which benefits the spin-polarized electron device based on the graphene materials.  相似文献   

11.
A modelling of the photoinjection process is developed which permits fitting of the spectral photoresponse of Schottky barriers including the electric field dependence of barrier height and photoresponse by means of two adjustable parameters: the zero field barrier BO and λ0 the zero temperature mean free path for optical phonon scattering of high energy electrons. The model assumes an image force potential barrier with Thomas-Fermi screening in the metal. Effects of optical phonon scattering and quantum mechanical transmission are convoluted on the Fowler photoelectron supply function. The effects of phonon scattering are frequently large because the ranges in energies associated with the transverse momentum and normal momentum are approximately the amount by which the quantum energy hv exceeds the barrier energy qφB. At high fields, quantum mechanical tunneling dominates the response when hv < B. At low fields, phonon assisted transmission is appreciable for the same quantum energy range. The calculation of the collection probability includes effects of multiple scattering even for electrons that do not lie initially within the cone of acceptance at the barrier maximum. An approach that considers the probability of collection the same as that of reaching the potential maximum without scattering is found to be acceptable only at high fields. Experimental results are reported from oxide-passivated epitaxial PtxSi-〈111〉 n-type Si Schottky barrier diodes with annular Schottky barrier guard rings measured at temperatures of 90 and 298 K for an electric field range from 5 × 103 to 9 × 104Vcm. The field, spectral and temperature dependences of the photoresponse data are in excellent agreement with theoretical predictions with λ0 = 110 Å at both 90 and 298 K. The zero field barrier height obtained from fitting photoresponse curves at a number of electric fields is also in excellent agreement with I-V and C-V measurements.  相似文献   

12.
The electrical resistance of tin embedded from a melt in porous glasses with an average pore diameter of ??7 nm has been investigated at low temperatures in magnetic fields up to 2 T. The temperatures of the transition to the superconducting state for nanocrystalline tin have been determined in magnetic fields of 0, 0.3, 0.5, 1.0, 1.5, and 2.0 T. It has been found that the temperature and magnetic-field dependences of the electrical resistance of the nanocomposite under investigation exhibit two transitions to the superconducting state. The nature of the double superconducting transitions has been discussed. The H c -T c phase diagram has been constructed using the entire set of data on the magnetic-field and temperature dependences of the electrical resistance of nanostructured tin. This phase diagram indicates that the upper critical magnetic field H c2(0) for nanostructured tin is almost two orders of magnitude higher than the corresponding field for bulk tin.  相似文献   

13.
The dependences of the permittivity and electrical conductivity of TlInS2 and TlGaS2 single crystals on the temperature and electron beam irradiation dose have been studied. It has been established that, as the electron irradiation dose increases, the electrical conductivity σ significantly increases, whereas the permittivity ? decreases over the entire temperature range covered (80–320 K). It has been shown that anomalies in the form of maxima in the temperature dependences σ(T) and ?(T) are observed in the regions characteristic of phase transitions in TlInS2. Irradiation of the TlInS2 and TlGaS2 crystals with electrons to doses of 1015 and 1016 cm?2 does not affect their phase transition temperatures. The dispersion curves of the permittivity ? of the TlGaS2 crystal have been constructed.  相似文献   

14.
The temperature dependences of the mobility of nondegenerate two-dimensional electrons in scattering by a correlated distribution of impurity ions in Al x Ga1 ? x As/GaAs heterostructures have been investigated. The cases where the influence of the first maximum of the structure factor on the scattering of electrons begins to dominate with increasing temperature have been considered. It has been found that the mobility of two-dimensional electrons decreases with increasing correlations in the spatial distribution of impurity ions. The influence exerted by the correlations and the width of the spacer layer on this effect has been analyzed.  相似文献   

15.
A method is proposed for calculating the adsorption of hydrogen in single-walled carbon nanotubes. This method involves solving the Schrödinger equation for a particle (hydrogen molecule) moving in a potential generated by the surrounding hydrogen molecules and atoms forming the wall of the carbon nanotube. The interaction potential for hydrogen molecules is taken in the form of the Silvera-Goldman empirical potential, which adequately describes the experimental data on the interaction between H2 molecules (including the van der Waals interaction). The interaction of hydrogen molecules with carbon atoms is included in the calculation through the Lennard-Jones potential. The free energy at a nonzero temperature is calculated with allowance made for the phonon contribution, which, in turn, makes it possible to take into account the correlations in the mutual arrangement of the neighboring molecules. The dependences of the total energy, the free energy, and the Gibbs thermodynamic potential on the applied pressure P and temperature T are calculated for adsorbed hydrogen molecules. These dependences are obtained for the first time with due regard for the quantum effects. The pressure and temperature dependences of the hydrogen density m(P, T) are also constructed for the first time.  相似文献   

16.
FMR experiments on the system Mn x Fe3?x O4 have been performed at 7·8 and 15·2 (or 16) GHz in the temperature range 80–300 K. The temperature dependences of the linewidth, resonance field and lineshape have been studied on spherical samples with diameter 0·25–1 mm. It has been shown that the observed dependences from greater part reflect the decrease of the skin depth with increasing temperature and are connected with the influence of the skin effect. This mechanism is discussed in more detail. The maxima in theΔH vs.T plot are compared to similar ones predicted for an infinite slab. The behaviour of the resonance field and lineshape is shown to be essentially dependent on the position of the uniform mode frequency to the upper limit of the spin-wave manifold. An approximative method has been given for treating resonance in the surface layer of the spherical sample and the corresponding surface mode. This mode and a further mode similar to the Walker magnetostatical (3,1,1) mode have been observed at higher temperatures. It has been experimentally verified that they can coexist with the nearly uniform mode.  相似文献   

17.
The electronic (quantum) transport in a NG/FB/FG tunnel junction (where NG, FB and FG are a normal graphene layer, a ferromagnetic barrier connected to a gate and a ferromagnetic graphene layer, respectively) is investigated. The motions of the electrons in the graphene layers are taken to be governed by the Dirac Equation. Parallel (P) and antiparallel alignment (AP) of the magnetizations in the barrier and in the ferromagnetic graphene are considered. Our work focuses on the oscillation of the electrical conductance (Gq), of the spin conductance (Gs) and of the tunneling magneto resistance (TMR) of this magnetic tunnel junction. We find that, the quantum modulation due to the effect of the exchange field in FB will be seen in the plots the conductance and of the TMR as functions of the thickness of ferromagnetic barrier (L). The period of two multiplied sinusoidal terms of the modulation are seen to be controlled by varying the gate potential and the exchange field of the FB layer. The phenomenon, a quantum beating, is built up with two oscillating spin conductance components which have different periods of oscillation related to the splitting of Dirac's energies in the FB region. The amplitudes of oscillations of Gq, Gs and TMR are not seen to decrease as the thickness increases. The decaying behaviors seen in the conventional transport through an insulator do not appear.  相似文献   

18.
The structural and electrophysical characteristics of a series of solid solutions of layered perovs-kite-like oxides Bi6 ? x Sr x Ti2 ? x Nb2 + x O18 (x = 0, 0.25, 0.5, 1.0, 1.5, 2.0) have been studied. The temperature dependences of the relative permittivity ?/?0(T) and dielectric loss tangent tanδ have been measured. The dependences of the maximum of the permittivity ?/?0, Curie temperature T C, lattice parameters, and the unit cell volume on x have been obtained. The structural parameter a, which corresponds to the polar direction, and the value of the orthorhombic distortion of the unit cell have been found to demonstrate noticeable negative deviations from the Vegard’s law. It has been established that the variations of the orthorhombic distortion correlate with the variations of the permittivity maximum; however, they do not markedly influence the Curie temperature that varies linearly over entire range of changes in x.  相似文献   

19.
The superconducting state of LiFeAs single crystals with the maximum critical temperature T c ≈ 17 K in the 111 family has been studied in detail by multiple Andreev reflections (MAR) spectroscopy implemented by the break-junction technique. The three superconducting gaps, ΔΓ = 5.1–6.5 meV, ΔL = 3.8–4.8 meV, and ΔS = 0.9–1.9 meV (at T ? T c), as well as their temperature dependences, have been directly determined in a tunneling experiment with these samples. The anisotropy degrees of the order parameters in the k space have been estimated as <8, ~12, and ~20%, respectively. Andreev spectra have been fitted within the extended Kümmel-Gunsenheimer-Nikolsky model with allowance for anisotropy. The relative electron-boson coupling constants in LiFeAs have been determined by approximating the Δ(T) dependences by the system of the two-band Moskalenko and Suhl equations. It has been shown that the densities of states in bands forming ΔΓ and ΔL are approximately the same, intraband pairing dominates in this case, and the interband coupling constants are related as λΓL ≈ λ ? λ, λSL.  相似文献   

20.
The crystal structure of sodium niobate (NaNbO3) has been investigated by energy-dispersive X-ray diffraction at high pressures (up to 4.3 GPa) in the temperature range 300–1050 K. At normal conditions, NaNbO3 has an orthorhombic structure with Pbcm symmetry (antiferroelectric P phase). Upon heating, sodium niobate undergoes a series of consecutive transitions between structural modulated phases P-R-S-T(1)-T(2)-U; these transitions manifest themselves as anomalies in the temperature dependences of the positions and widths of diffraction peaks. Application of high pressure leads to a decrease in the temperatures of the structural transitions to the R, S, T(1), T(2), and U phases with different baric coefficients. A phase diagram for sodium niobate has been build in the pressure range 0–4.3 GPa and the temperature range 300–1050 K. The dependences of the unit-cell parameters and volume on pressure and temperature have been obtained. The bulk modulus and the volume coefficients of thermal expansion have been calculated for different structural modulated phases of sodium niobate. A phase transition (presumably, from the antiferroelectric orthorhombic P phase to the ferroelectric rhombohedral N phase) has been observed at high pressure (P = 1.6 GPa) and room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号