首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 565 毫秒
1.
Various vehicle routing problems (VRP) appear in the literature due to their important applications in the area of transportation and distribution.A VRP is characterized by the constraints that the involved factors must satisfy and by an optimality goal.In this paper, we develop a heuristic algorithm that
  • (i)partitions suitably a distribution network into subnetworks. A single depot complies with every subnetwork, where a fleet of identical vehicles will start their itinerary. The nodes of the corresponding subnetwork are demand nodes that require a onetime visit by one only vehicle.
  • (ii)Determine the routes of k vehicles, k=2,3,…, for every subnetwork so to minimize the visiting time of the corresponding demand nodes. Consequently the method computes the necessary vehicle number for each subnetwork so as to complete promptly the visiting requirement of all the demand nodes of the whole network. The main strategy of the algorithm for designing the vehicle routes consists of balancing the time utilization of the used vehicles. The paper is integrated by an application of the presented algorithm to the center of the city of Thessaloniki.
  相似文献   

2.
In this paper, we study a rich vehicle routing problem incorporating various complexities found in real-life applications. The General Vehicle Routing Problem (GVRP) is a combined load acceptance and generalised vehicle routing problem. Among the real-life requirements are time window restrictions, a heterogeneous vehicle fleet with different travel times, travel costs and capacity, multi-dimensional capacity constraints, order/vehicle compatibility constraints, orders with multiple pickup, delivery and service locations, different start and end locations for vehicles, and route restrictions for vehicles. The GVRP is highly constrained and the search space is likely to contain many solutions such that it is impossible to go from one solution to another using a single neighbourhood structure. Therefore, we propose iterative improvement approaches based on the idea of changing the neighbourhood structure during the search.  相似文献   

3.
We study the chance-constrained vehicle routing problem (CCVRP), a version of the vehicle routing problem (VRP) with stochastic demands, where a limit is imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing feature of our proposed methodologies is that they allow correlation between random demands, whereas nearly all existing exact methods for the VRP with stochastic demands require independent demands. We first study an edge-based formulation for the CCVRP, in particular addressing the challenge of how to determine a lower bound on the number of vehicles required to serve a subset of customers. We then investigate the use of a branch-and-cut-and-price (BCP) algorithm. While BCP algorithms have been considered the state of the art in solving the deterministic VRP, few attempts have been made to extend this framework to the VRP with stochastic demands. In contrast to the deterministic VRP, we find that the pricing problem for the CCVRP problem is strongly \(\mathcal {NP}\)-hard, even when the routes being priced are allowed to have cycles. We therefore propose a further relaxation of the routes that enables pricing via dynamic programming. We also demonstrate how our proposed methodologies can be adapted to solve a distributionally robust CCVRP problem. Numerical results indicate that the proposed methods can solve instances of CCVRP having up to 55 vertices.  相似文献   

4.
The split delivery vehicle routing problem (SDVRP) relaxes routing restrictions forcing unique deliveries to customers and allows multiple vehicles to satisfy customer demand. Split deliveries are used to reduce total fleet cost to meet those customer demands. We provide a detailed survey of the SDVRP literature and define a new constructive algorithm for the SDVRP based on a novel concept called the route angle control measure. We extend this constructive approach to an iterative approach using adaptive memory concepts, and then add a variable neighborhood descent process. These three new approaches are compared to exact and heuristic approaches by solving the available SDVRP benchmark problem sets. Our approaches are found to compare favorably with existing approaches and we find 16 new best solutions for a recent 21 problem benchmark set.  相似文献   

5.
随机需求的车辆路线问题的新模型   总被引:7,自引:0,他引:7  
倪勤  袁健  刘晋 《运筹与管理》2001,10(3):74-79
本主要研究随机需求的VRP问题,其中服务需求量满足二项式分布,根据期望值的大小我们提出了在一条路线上理想最大服务点数的新概念,并在此基础上建立了三种VRP问题的新模型,由于允许服务失败两次和部分服务使得模糊能适应多种实际问题,以模拟退火思想为基础的两阶段方法经修正后用于解新模型并取得较好的数值结果,理论分析和数值结果表明,新模型较好地描述随机需求的VRP问题,并且容易求解。  相似文献   

6.
Recently proved successful for variants of the vehicle routing problem (VRP) involving time windows, genetic algorithms have not yet shown to compete or challenge current best search techniques in solving the classical capacitated VRP. A new hybrid genetic algorithm to address the capacitated VRP is proposed. The basic scheme consists in concurrently evolving two populations of solutions to minimize total travelled distance using genetic operators combining variations of key concepts inspired from routing techniques and search strategies used for a time variant of the problem to further provide search guidance while balancing intensification and diversification. Results from a computational experiment over common benchmark problems report the proposed approach to be very competitive with the best-known methods.  相似文献   

7.
This paper discusses neighborhood search algorithms where the size of the neighborhood is very large” with respect to the size of the input data. We concentrate on such a very large scale neighborhood (VLSN) search technique based on compounding independent moves (CIM) such as 2-opts, swaps, and insertions. We present a systematic way of creating and searching CIM neighborhoods for routing problems with side constraints. For such problems, the exact search of the CIM neighborhood becomes NP-hard. We introduce a multi-label shortest path algorithm for searching these neighborhoods heuristically. Results of a computational study on the vehicle routing problem with capacity and distance restrictions shows that CIM algorithms are very competitive approaches for solving vehicle routing problems. Overall, the solutions generated by the CIM algorithm have the best performance among the current solution methodologies in terms of percentage deviation from the best-known solutions for large-scale capacitated VRP instances.  相似文献   

8.
We examine neighborhood structures for heuristic search applicable to a general class of vehicle routing problems (VRPs). Our methodology utilizes a cyclic-order solution encoding, which maps a permutation of the customer set to a collection of many possible VRP solutions. We identify the best VRP solution in this collection via a polynomial-time algorithm from the literature. We design neighborhoods to search the space of cyclic orders. Utilizing a simulated annealing framework, we demonstrate the potential of cyclic-order neighborhoods to facilitate the discovery of high quality a priori solutions for the vehicle routing problem with stochastic demand (VRPSD). Without tailoring our solution procedure to this specific routing problem, we are able to match 16 of 19 known optimal VRPSD solutions. We also propose an updating procedure to evaluate the neighbors of a current solution and demonstrate its ability to reduce the computational expense of our approach.  相似文献   

9.
We present a simulated annealing based algorithm for a variant of the vehicle routing problem (VRP), in which a time window is associated with each client service and some services require simultaneous visits from different vehicles to be accomplished. The problem is called the VRP with time windows and synchronized visits. The algorithm features a set of local improvement methods to deal with various objectives of the problem. Experiments conducted on the benchmark instances from the literature clearly show that our method is fast and outperforms the existing approaches. It produces all known optimal solutions of the benchmark in very short computational times, and improves the best results for the rest of the instances.  相似文献   

10.
突发事件应急医疗物资调度的随机算法   总被引:2,自引:0,他引:2  
传统的车辆路径问题(VRP)是为车辆设计将物资从仓库运送到各个需求客户的路线,使得总的运输费用(或时间)最小。在本文中,我们更关心的是使得未满足的需求量和总的物资延误时间最小。这个模型的一个非常重要的应用就是当大规模突发事件发生以后如何有效的将应急医疗物资运送到各个医疗单位,例如自然灾难,恐怖袭击之后,各个医院的医疗物资有限,需要从应急中心调集所需物资,在这种情况下,从应急中心分发应急物资过程中的运输费用就不再是最主要的考查因素,而更重要的是考虑物资到达医院的时间以及到达量,因为这两个因素直接与病人生命息息相关。本文的主要工作是改进了已有的局部搜索算法,通过引入随机算法的思想设计了求解模型的改进随机算法,可以得到模型更优的解,并通过计算机模拟案例说明了算法是行之有效的。  相似文献   

11.
In the vehicle routing problem (VRP), a fleet of vehicles must service the demands of customers in a least-cost way. In the split delivery vehicle routing problem (SDVRP), multiple vehicles can service the same customer by splitting the deliveries. By allowing split deliveries, savings in travel costs of up to 50 % are possible, and this bound is tight. Recently, a variant of the SDVRP, the split delivery vehicle routing problem with minimum delivery amounts (SDVRP-MDA), has been introduced. In the SDVRP-MDA, split deliveries are allowed only if at least a minimum fraction of a customer’s demand is delivered by each visiting vehicle. We perform a worst-case analysis on the SDVRP-MDA to determine tight bounds on the maximum possible savings.  相似文献   

12.
In this study, a heuristic free from parameter tuning is introduced to solve the vehicle routing problem (VRP) with two conflicting objectives. The problem which has been presented is the designing of optimal routes: minimizing both the number of vehicles and the maximum route length. This problem, even in the case of its single objective form, is NP-hard. The proposed self-tuning heuristic (STH) is based on local search and has two parameters which are updated dynamically throughout the search process. The most important advantage of the algorithm is the application convenience for the end-users. STH is tested on the instances of a multi-objective problem in school bus routing and classical vehicle routing. Computational experiments, when compared with the prior approaches proposed for the multi-objective routing of school buses problem, confirm the effectiveness of STH. STH also finds high-quality solutions for multi-objective VRPs.  相似文献   

13.
In this paper, we propose fast heuristics for the vehicle routing problem (VRP) with lexicographic max-order objective. A fixed number of vehicles, which are based at a depot, are to serve customers with known demands. The lexicographic max-order objective is introduced by asking to minimize lexicographically the sorted route lengths. Based on a model for this problem, several approaches are studied and new heuristic solution procedures are discussed resulting in the development of a sequential insertion heuristic and a modified savings algorithm in several variants. Comparisons between the algorithms are performed on instances of the VRP library VRPLIB. Finally, based on the results from the computational experiments, conclusions about the applicability and efficiency of the presented algorithms are drawn.  相似文献   

14.
The heterogeneous fixed fleet vehicle routing problem (HFFVRP) is a variant of the standard vehicle routing problem (VRP), in which the vertices have to be served using a fixed number of vehicles that could be different in size and fixed or variable costs. In this article, we propose an integer linear programming-based heuristic approach in order to solve the HFFVRP that could be used as a complementary tool to improve the performance of the existing methods of solving this problem. Computational results show the effectiveness of the proposed method.  相似文献   

15.
Vehicle Routing Problems (VRP) are concerned with the delivery of a single commodity from a centralized depot to a number of specified customer locations with known demands. In this paper we consider the VRP characterized by: fixed or variable number of vehicles, common vehicle capacity, distance restrictions, and minimization of total distance travelled by all vehicles as the objective. We develop an exact algorithm based on a new subtour elimination constraint. The algorithm is implemented using the CPLEX package for solving the relaxed subproblems. Computational results on 1590 simulated problems and 10 literature problems (without distance restrictions) are reported and a comparative analysis is carried out.  相似文献   

16.
The vehicle routing problem (VRP) under capacity and distance restrictions involves the design of a set of minimum cost delivery routes, originating and terminating at a central depot, which services a set of customers. Each customer must be supplied exactly once by one vehicle route. The total demand of any vehicle must not exceed the vehicle capacity. The total length of any route must not exceed a pre-specified bound. Approximate methods based on descent, hybrid simulated annealing/tabu search, and tabu search algorithms are developed and different search strategies are investigated. A special data structure for the tabu search algorithm is implemented which has reduced notably the computational time by more than 50%. An estimate for the tabu list size is statistically derived. Computational results are reported on a sample of seventeen bench-mark test problems from the literature and nine randomly generated problems. The new methods improve significantly both the number of vehicles used and the total distances travelled on all results reported in the literature.  相似文献   

17.
In this paper, the capacitated location-routing problem with fuzzy demands (CLRP-FD) is considered. In CLRP-FD, facility location problem (FLP) and vehicle routing problem (VRP) are observed simultaneously. Indeed, the vehicles and the depots have a predefined capacity to serve the customers that have fuzzy demands. To model this problem, a fuzzy chance constrained programming model of that is designed based upon the fuzzy credibility theory. To solve this problem, a greedy clustering method (GCM) including the stochastic simulation is proposed. To obtain the best value of the dispatcher preference index of the model and to analyze its influence on the final solution, numerical experiments are carried out. Finally, to show the performance of the greedy clustering method, associated results are compared with the lower bound of the solutions.  相似文献   

18.
The open vehicle routing problem (OVRP) differs from the classic vehicle routing problem (VRP) because the vehicles either are not required to return to the depot, or they have to return by revisiting the customers assigned to them in the reverse order. Therefore, the vehicle routes are not closed paths but open ones. A heuristic method for solving this new problem, based on a minimum spanning tree with penalties procedure, is presented. Computational results are provided.  相似文献   

19.
The classical vehicle routing problem (VRP) involves determining a fleet of homogeneous size vehicles and designing an associated set of routes that minimizes the total cost. Our tabu search (TS) algorithm to solve the VRP is based on reactive tabu search (RTS) with a new escape mechanism, which manipulates different neighbourhood schemes in a very sophisticated way in order to get a balanced intensification and diversification continuously during the search process. We compare our algorithm with the best methods in the literature using different data sets and report results including new best known solutions for several well-known benchmark problems.  相似文献   

20.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号