共查询到20条相似文献,搜索用时 17 毫秒
1.
在考虑增益、损耗、群速度色散、自相位调制、快速可饱和吸收体等各种参数同时作用情况下,分析了非线性偏振旋转效应自启动锁模机理,研究了腔体参数与锁模脉冲之间的关系,并给出飞秒被动锁模环形腔掺Er3+光纤激光器实验原理。实验采用性能稳定的980nm半导体激光器作为抽运源,高掺杂短长度掺Er3+光纤作为增益介质,利用非线性偏振旋转锁模技术,得到了稳定的飞秒自起振锁模光脉冲。抽运功率为23mW时,激光器输出锁模脉冲中心波长1552nm,3dB带宽为7.6nm,重复频率14.0MHz,平均输出功率0.43mW,自起振锁模泵浦阈值功率11.5mW,并观测到了稳定的高阶锁模脉冲输出。该激光器与报道过的相同结构光纤激光器相比,自起振泵浦阈值低、脉冲能量高、稳定性好,且频谱边带幅度小。 相似文献
2.
Y. Cai C. Zhou M. Zhang L. Ren L. L. Chen W. P. Kong D. Q. Pang Z. G. Zhang 《Laser Physics》2009,19(10):2023-2026
We proposed and fabricated a metal/dielectric mirror based high modulation depth semiconductor saturable absorber mirror (SESAM), for ease of the growth restrictions. Using such a SESAM, we obtained self-starting mode-locking in a ring cavity fiber laser, which produced 102 fs pulses at a repetition rate of 36.2 MHz. 相似文献
3.
An optical clock based on an Er3+ fiber femtosecond laser and a two-mode He–Ne/CH4 optical frequency standard (λ=3.39 μm) is realized. Difference-frequency generation is used to down convert the 1.5-μm frequency comb of the Er3+ femtosecond laser to the 3.4-μm range. The generated infrared comb overlaps with the He–Ne/CH4 laser wavelength and does not depend on the carrier–envelope offset frequency of the 1.5-μm comb. In this way a direct phase-coherent
connection between the optical frequency of the He–Ne/CH4 standard and the radio frequency pulse repetition rate of the fiber laser is established. The stability of the optical clock
is measured against a commercial hydrogen maser. The measured relative instability is 1×10−12 at 1 s and for averaging times less than 50 s it is determined by the microwave standard, while for longer times a drift
of the He–Ne/CH4 optical standard is dominant. 相似文献
4.
The high‐power femtosecond laser has now become an excellent scientific tool for the study of not only relativistic laser–matter interactions but also scientific applications. The high‐power femtosecond laser depends on the Kerr‐lens modelocking (KLM) and chirped‐pulse amplification (CPA) technique. An all‐Ti:sapphire‐based 30‐fs PW CPA laser, which is called the PULSER (Petawatt Ultrashort Laser System for Extreme Science Research) has been recently constructed and is being used for accelerating the charged particles (electrons and protons) and generating ultrashort high‐energy photon (X‐ray and γ‐ray) sources. In this review, the world‐wide PW‐level femtosecond laser systems are first summarized, the output performances of the PULSER‐I & II are described, and the future upgrade plan of the PULSER to the multi‐PW level is also discussed. Then, several experimental results on particle (electron and proton) acceleration and X‐ray generation in the intensity range of mid‐1018 W/cm2 to mid‐1020 W/cm2 are described. Experimental demonstrations for the newly proposed phenomena and the understanding of physical mechanisms in relativistic and ultrarelativistic regimes are highly expected as increasing the laser peak intensity up to over 1022 W/cm2 ~1023 W/cm2. 相似文献
5.
A simple technique is proposed for highly-efficient plane processing fully based on femtosecond laser beam shaping. The laser intensity distribution is transformed from a Gaussian to a donut shape. As the donut-shaped focus seems like a flat top from the side view, a plane with a high level of flatness is obtained directly by scanning once.By applying it to polishing experiments, the surface roughness can be improved significantly. The influence of scanning speed, laser pulse energy, and scanning times on the roughness is also discussed. Moreover, the scanning width can be flexibly controlled in a wide range. 相似文献
6.
为了减小器件尺寸、实现超快速响应和动态可调谐,研究了基于石墨烯纳米条波导边耦合矩形腔的单波段和双波段的等离子体诱导透明(PIT)效应,通过耦合模式理论和时域有限差分法从数值计算和模拟仿真两方面分析了模型的慢光特性.通过调节石墨烯矩形腔的化学势,同时实现了单波段、双波段PIT模型的谐振波长和透射峰值的可调谐性.当石墨烯的化学势增加时,各个波段PIT窗口的谐振波长逐渐减小,发生蓝移.此外,通过动态调谐石墨烯矩形腔的谐振波长,当石墨烯矩形腔的化学势为0.41—0.44 eV时,单PIT系统的群折射率控制在79.2—28.3之间,可调谐带宽为477 nm;当石墨烯矩形腔1, 2, 3的化学势分别为0.39—0.42 eV, 0.40—0.43 eV, 0.41—0.44 eV时,双PIT系统的群折射率控制在143.2—108.6之间.并且,整个系统的尺寸小于0.5μm~2.研究结果对于超快速、超紧凑型和动态可调谐的光传感、光滤波、慢光和光存储器件的设计和制作具有一定的参考意义. 相似文献
7.
Selm R Winterhalder M Zumbusch A Krauss G Hanke T Sell A Leitenstorfer A 《Optics letters》2010,35(19):3282-3284
We demonstrate a scheme for efficient coherent anti-Stokes Raman scattering (CARS) microscopy free of nonresonant background. Our method is based on a compact Er:fiber laser source. Impulsive excitation of molecular resonances is achieved by an 11 fs pulse at 1210 nm. Broadband excitation gives access to molecular resonances from 0 cm(-1) up to 4000 cm(-1). Time-delayed narrowband probing at 775 nm enables sensitive and high-speed spectral detection of the CARS signal free of nonresonant background with a resolution of 10 cm(-1). 相似文献
8.
飞秒激光精密微纳加工的研究进展 总被引:4,自引:0,他引:4
飞秒激光由于其超快时间特性和超高峰值功率特性在精密微纳加工领域引起了人们广泛的重视.在与物质的相互作用中它能快速、准确地将能量作用在特定的区域内,从而可以获得极高的分辨率和加工精度。文章综述了飞秒激光精密微纳加工的最新研究进展,分别就飞秒激光烧蚀微加工和飞秒激光双光子聚合产生三维微纳结构进行了介绍,阐述了各自的物理机制.最后对飞秒激光微纳加工的研究前景做了初步探讨。 相似文献
9.
We find the femtosecond laser induced microripple beside the focused femtosecond laser spot and along the movement direction of the laser spot on polydimethylsiloxane (PDMS) surface. The microripple may be due to the melting of PDMS induced by femtosecond laser pulses and the subsequent cool-down solidification of the melting PDMS along with the movement of the femtosecond laser spot. This result will be helpful to understand the interaction between the femtosecond laser and the polymer. 相似文献
10.
A photoconductive switch driving a Pockels cell ensures energy self-stabilization of ultra-fast laser pulses from single shot to hundreds of kHz. In this kind of stabilization, the pulse corrects itself. In a first experiment, the self-stabilization of a 20-Hz, 800-nm femtosecond Chirped Pulse Amplification laser shows a reduction of the energy fluctuations from 7% rms to 0.64% rms. PACS 42.60.Lh; 42.60.Mi; 42.65.Re 相似文献
11.
为了实现对飞秒激光器产生的超短脉冲的进一步压缩,对近年来出现的一种新型负曲率空芯光纤展开了研究,并基于该光纤对800 nm飞秒激光进行了压缩实验。首先介绍了一种圆形玻璃管包层结构的负曲率空芯光纤,通过有限元方法对光纤的损耗特性进行计算,并与实验测试结果进行对比。然后利用广义非线性薛定谔方程对脉冲在光纤中的传输进行了模拟仿真。最后利用该光纤进行了超短脉冲压缩实验,将脉冲宽度为160 fs的钛宝石飞秒激光耦合进一段充高压氩气的圆形玻璃管包层结构的负曲率空芯光纤,通过光纤内反常色散和自相位调制的共同作用,得到84 fs的输出,实现脉冲的压缩,实验结果与仿真计算一致。这种新型的负曲率空芯光纤损伤阈值高、色散、非线性系数小且灵活可调,非常适用于超快领域研究。 相似文献
12.
Experiments on the ablation of polymethylmethacrylate (PMMA) with 300 fs uv excimer laser pulses at 248 nm are reported for the first time. With these ultrashort pulses, ablation can be done at fluences up to five times lower than the threshold fluence for 16 ns ablation of PMMA, and the surface morphology is improved, also for several other materials. A model for ablation is proposed, assuming a non-constant absorption coefficient eff depending on the degree of incubation of the irradiated material and the intensity of the incoming excimer laser pulse. The agreement between our model and our experimental observations is excellent for 16 ns excimer laser pulses, also predicting perfectly the shape of a pulse transmitted through a thin PMMA sample under high fluence irradiation. Qualitative agreement for 300 fs excimer laser pulses is obtained so far. 相似文献
13.
High rate femtosecond (fs) laser ablation of the organic salt 4-N,N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST), an organic crystal with very high optical nonlinearities has been demonstrated. The threshold fluence and the ideal fluence range for damage free ablation for the wavelengths 550, 600, and 775 nm have been determined and the quality of the produced grooves has been investigated. The threshold fluences are in the order of 10–70 mJ/cm2 and the ideal fluence range for damage free ablation is ranging from 30 to 300 mJ/cm2, depending on the wavelength. The optimal focussing for ablation has been investigated and first results towards the structuring of a ridge waveguide are presented. We conclude that this method is most promising for waveguide patterning of DAST surfaces for integrated optics applications. 相似文献
14.
We investigate femtosecond laser ablation of aluminium using a hybrid simulation scheme. Two equations are solved simultaneously: one for the electronic system, which accounts for laser energy absorption and heat conduction, the other for the dynamics of the lattice where the ablation process takes place. For the electron-temperature a generalized heat-conduction equation is solved by applying a finite difference scheme. For the lattice properties, e.g. pressure, density or temperature, we use common molecular dynamics. Energy transfer between the subsystems is allowed by introducing an electron-phonon coupling term. This combined treatment of the electronic and atomic systems is an extension of the well known two-temperature model [Anisimov, Kapeliovich, Perel’man, Electron emission from metal surfaces exposed to ultra short laser pulses, JETP Lett. 39 (2)]. 相似文献
15.
The high field strength of femtosecond laser pulses leads to nonlinear effects during the interaction with condensed matter. One such effect is the ablation process, which can be initiated below the threshold of common thermal ablation if the excitation pulses are sufficiently short. This effect leads to structure formation, which is anisotropic because of the polarization properties of the near field and can result in pattern sizes below the resolution limit of light. These effects are explored by temporally resolved scattering methods and by post‐mortem analysis to show the non‐thermal and anisotropic nature of this process. The near‐field distribution of plasmon modes can be tailored to a large extent in order to obtain control of the pattern formation. 相似文献
16.
飞秒激光相干场诱导材料功能微结构 总被引:2,自引:0,他引:2
飞秒激光在整个脉冲宽度内具有极好的相干性,因而当从同一光束分出的两束或两束以上的光束时间与空间上实现相互叠加时将会形成强度周期性调制的电磁场.这种周期调制的电磁场与材料产生相互作用,能诱导出相应的周期微结构.最近通过两束或两束以上飞秒激光干涉诱导功能微结构得到了广泛研究.文章综合了国内外飞秒激光研究小组在干涉诱导微结构方面的一些最新成果以及作者在这方面开展的工作,对飞秒激光干涉技术的原理及其在诱导微结构方面的应用进行了介绍. 相似文献
17.
Based on the present coupled mode theory of the photonic crystal resonator array in this paper,we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices.It is found that the coupling efficiency is sensitive to the interval,the total number and the quality factor of the resonator.Considering the coupling efficiency and the coupling region,we select five resonators with an interval of six lattice periods.By optimizing the structure parameters of the waveguide and resonator,the quality factors of the resonator can be modulated and the coupling efficiency of the side-coupled waveguide reaches 95.47% in theory.Compared with other coupling methods,the side-coupled waveguide can realize efficient coupling with a compact structure,a high level of integration and a low degree of operational difficulties. 相似文献
18.
An optical delay line based on a new kind of structure comprising coupled resonators and side-coupled resonators has been proposed and demonstrated. The structure has unique advantages in realizing tunable optical delay lines. The tuning range has covered almost the full range of the optical delay line, from minimum delay at which only one ring of the light pulse structure requires transmission, to maximum delay at which all rings are required. In addition, the input signal delivered from the input to output port travels the structure twice, thereby providing buffer delay that is twice longer than general coupled resonators. 相似文献
19.
Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found that the coupling efficiency is sensitive to the interval, the total number and the quality factor of the resonator. Considering the coupling efficiency and the coupling region, we select five resonators with an interval of six lattice periods. By optimizing the structure parameters of the waveguide and resonator, the quality factors of the resonator can be modulated and the coupling efficiency of the side-coupled waveguide reaches 95.47% in theory. Compared with other coupling methods, the side-coupled waveguide can realize efficient coupling with a compact structure, a high level of integration and a low degree of operational difficulties. 相似文献
20.
Kumkar S Krauss G Wunram M Fehrenbacher D Demirbas U Brida D Leitenstorfer A 《Optics letters》2012,37(4):554-556
We generate broadband pulses covering the Yb: and Tm:silica amplification ranges with a passively phase-locked front end based on Er:fiber technology. Full spectral coherence of the octave-spanning output from highly nonlinear germanosilicate bulk fibers is demonstrated. Seeding of a high-power Tm:fiber generates pulses with a clean spectral shape and a bandwidth of 50 nm at a center wavelength of 1.95 μm, pulse energy of 250 nJ, and repetition rate of 10 MHz. 相似文献